タグ

ブックマーク / www.ajimatics.com (6)

  • 「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス

    「その数自体は0でないのに、2乗するとはじめて0になる数」ってなんですか? そんな数あるはずがないと思いますか? でももしそんな数を考えることができるなら、ちょっとワクワクすると思いませんか? 今回はそんな謎の数のお話。 実数の中には、「2乗して0になる数」というのは0しかありません。 (2乗して0になる実数は0しかない図) ということは、「2乗してはじめて0になる数」というのがあるとしたら、それは実数ではありえません。 「1年A組にはメガネの人はいないので、メガネの人がいたとしたらその人は1年A組ではありえない」くらいの当たり前のことを言っています。 この辺の議論は、複素数で「」を導入したときと同じですね。 「実数の中には、2乗して-1になる数というのは存在しないので、それがあるとしたら実数ではありえない」ということで「虚数」であるが導入されるわけです。 それならばということで、ここでは

    「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス
    knok
    knok 2021/03/23
    自動微分に関係があるのかあ
  • 「群」って何なの?「同一視」から始める群論 - アジマティクス

    ものを知れば知るほど、いつも歩いている道なんかも解像度が上がって見えてくるわけです。 花の名前や雲の種類、建築の様式などはその代表格でしょう。 同じように、知れば知るほど数学の見え方の解像度が上がる(にも関わらず、高校までの数学ではまったくと言っていいほど出てこない)ものの代表格が「線形代数」と「群論」だと思っています。 線形代数については過去にこのブログで扱ったことがあるのでそちらを参照いただくとして、今回は知れば知るほど身の回りにあふれていることがわかって驚かされる「群」という概念のご紹介です。 一体、群とは何なのでしょうか? とある3つの表 CASE-1 足して4で割る 0,1,2,3という4つの数がありますね。世の中には。 この4つの数に対して、「2数を足して、その答えを4で割ったあまりをとる」という演算を考えます。 例えば「2」と「3」に対してこの演算をすると「1」となります。

    「群」って何なの?「同一視」から始める群論 - アジマティクス
    knok
    knok 2019/12/05
  • 【数学】三人寄れば文殊の知恵が得られることの証明 - アジマティクス

    よく知られた定理として、以下のものがあります。 定理:3人寄れば文殊の知恵 古くから知られている定理ですが、日常的によく使う定理である割にはその証明をきちんと追ったことがある方は少ないのではないかと思います。以下ではこちらの定理の証明を解説します。 前提 まずは要請される前提を確認しておきます。 ・3人の人間がいます。名前はまあ何でもいいですがバルタザール、メルキオール、カスパーだと長いのでA,B,Cとでもしておきましょう。 ・彼らは目の前の問題に対して何らかの意思決定をします。「問題」とは例えば「明日は遊園地に行くことにしようか?」とか、「あの子に告白した方がいいだろうか?」とか、「被告人を有罪にすべきだろうか?」などのことです。 ・3人はそれぞれ、ちゃんと自分で考えて意思決定をします。これはつまり「他の人の判断に影響を受けることなく」ということです。「Aがそう言うんなら俺は意見変えよう

    【数学】三人寄れば文殊の知恵が得られることの証明 - アジマティクス
    knok
    knok 2019/04/29
    アンサンブルだ
  • 【GIF多め】ギャラリー:目で見る複素数 - アジマティクス

    2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそこにして、複素数を眺めてうわ〜きれいだね〜素敵だね〜っていう記事です。 複素平面 任意の複素数は、平面上の一点として表すことができます。 今でこそ「複素数といえば平面」というイメージがあるかもしれませんが、「複素数を平面上の一点として表す」というのは驚くほど画期的なアイデアです。 それまで、複素数は「方程式を解く途中にだけ出てきて、いざ解かれたあかつきには消えてしまう」という「便宜的な数」「虚構の数」と思われていました。 ガウスによって「複素平面」のアイデアが導入されてようやく複素数が図形的な表れを伴った。複素数にはそんな歴史があるようです。 複素数

    【GIF多め】ギャラリー:目で見る複素数 - アジマティクス
    knok
    knok 2019/04/03
    可視化は重視されていているのでありがたい
  • 三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス

    数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ🐟 (@motcho_tw) February 7, 2018 たくさんの点を、それぞれの点に書かれた数に応じた速度で回すことにより、大きく灰色で表示された数の素因数を表現しているわけです。楽しいですね。 こんなのもあります。 3Dで図示してみました。 pic.twitter.com/AF2R1QEtqk — 鯵坂もっちょ🐟 (@motcho_tw) April 12, 2017 九九におけるの段の「一の位」は、ぐるぐる回る点によって表現することができます。面白いですね。 変わったものでは、こういうのもあります。 惑星が「惑星」と呼ばれる理由ですhttps:/

    三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス
    knok
    knok 2019/01/11
    サイトの作りを知りたい。最近ガウス過程の可視化サイトを見て理解を深めたので自分でもやってみようとしている https://www.jgoertler.com/visual-exploration-gaussian-processes/
  • 無限べき乗a^a^a^...の収束と発散との境目が気になる - アジマティクス

    一般に、境目は大事です。どこまでが友人で、どこからが恋人なのか、とか。 この記事は「好きな証明」アドベントカレンダー1日目の記事です。 上記の式のことを考えます。今回はは正の実数とします。そのが無限に乗じられているわけです。一見面らってしまう見た目をしていますが、という列の極限として捉えられる、と考えればそこまで異常な概念でもないと思います。あるいは、この式全体を「」とでも置けば与式はと閉じた見た目にできるので怖くないです。(※極限値があると仮定) さて、当然のこととして、に値を入れてみたときにこの式がどう振る舞うのか知りたくなるのが人情です。とりあえず試しにだとしてみましょう。これはすなわち「」のことなわけですが、これはまあ1を何回乗じても1なのでも1になると予想がつくでしょう。 今度はだとしてみます。という数列は、実際に計算するととなり、明らかに発散(いくらでも大きくなる)しそうな雰

    無限べき乗a^a^a^...の収束と発散との境目が気になる - アジマティクス
    knok
    knok 2018/12/01
    これを自力で導出できるようになりたい
  • 1