アルゴリズム・ゲームAI・インフラ・データマイニング・セキュリティのコンテストと、そのはじめかたを紹介していきます。

最近、「機械学習」や「自然言語処理」、といったキーワードを聞くことが多くなってきていると思います。 反面、すごそうだけどなんだか難しいもの、というイメージもあるのではないかと思います。そこで、今回は「自然言語処理」の一種であるトピックモデルを取り上げ、その仕組みを紹介するとともに、その実装方法について解説していきたいと思います。 (「機械学習」の方については、以前開催した勉強会の資料がありますので、興味があればそちらもご参照ください。) トピックモデルとは トピックモデルは、確率モデルの一種になります。つまり、何かが「出現する確率」を推定しているわけです。 トピックモデルが推定しているのは、文章中の「単語が出現する確率」になります。これをうまく推定することができれば、似たような単語が出てくる文章(=似たようなモデルの文書)が把握でき、ニュース記事などのカテゴリ分類を行ったりすることができま
本稿は、ブダペストで開かれたイベント「 RuPy 」で、Pat Shaughnessyが披露したプレゼンの内容をまとめたものです。 プレゼンの映像はここ から視聴できます。 本稿は当初、 同氏の個人ブログ に投稿されましたが、同氏の了承を得て、Codeshipに再掲載します。 このイベントは「RubyとPython」に関するカンファレンスなので、RubyとPythonでは、ガベージコレクション(以下「GC」)の動作がどう違うのかを比較すると面白いだろうと私は思いました。 ただしその本題に入る前に、そもそもなぜ、GCを取り上げるのかについてお話しします。正直言って、すごく魅力的な、わくわくするテーマではないですよね? 皆さんの中でGCと聞いて、心がときめいた方はいらっしゃいますか? [実はこのカンファレンス出席者の中で、ここで手を挙げた人は数名いました!] Rubyコミュニティで最近、Rub
補間¶ 本稿では補間曲線の構築方法であるラグランジュ補間とスプライン補間について記す。 SciPy ではそれぞれ関数呼び出し一発で補間曲線が得られるので便利だ。 Lagrange 補間¶ 普通は採用しない補間方式だが、関数 scipy.interpolate.lagrange を用いると Lagrange 補間多項式を得られる。単一の多項式で補間を表現するという性質上、多数の測定データに対して得られる補間多項式は次数が高くなり、数値計算に適さなくなる。次数が高いと、測定データから離れたパラメーターにおける補間関数の評価値が「暴れる」ので、補間としての質がそもそも問題外になる。 SciPy のドキュメントでは、大体 20 個以上の点を寄越してくれるなと警告している。 コード的な手順は次のとおりとなる。 データ点列を array-like の形式で用意する。以下の説明ではそれぞれ x, y と
"Speaker: Curtis Lassam Our trusty friend, the hash function, is as crucial to programming as linked lists or recursion, but it doesn't always get the press that it deserves. We're going to talk about hash functions, some data structures involving hash functions, the stately bloom filter, and the security implications of password hashing. Slides can be found at: https://speakerdeck.com/pycon2
あけましておめでとうございます。白ヤギの物理担当、シバタアキラ(@punkphysicist)です。 皆様はどんなお正月を過ごされましたか?日本の正月といえば、おせち、日本酒、おばあちゃん、そしてパズル、ですよね。私の正月はそんな感じでした。お節をたらふく食べ、美味しいお酒でほろ酔い気分になっている私の横で、黙々とおばあちゃんがパズルをやっているのに気づいたのです。部屋中をフワフワしている私とは全く対照的に、微動だにせずパズルを続けるおばあちゃん。御年迎えられると辛抱強さが半端ない。 そんなおばあちゃんがやっていたのはかわいいチョコレートのピースとは裏腹にこんな挑発的な文言の書かれたパズルです(この記事はアフィリエイトではありませんが、写真をクリックすると買えます) 何時間たっても答えが出ないおばあちゃん、辛抱強さは人一倍強いですが、私も何とか助けてあげたいと思いトライ。しかし日本酒が・・
これはなんですか? 奥村晴彦氏の著書「C言語による最新アルゴリズム事典」をPythonでやろうと決意。Rubyに翻訳されていたので、Pythonでもやってみようと。でも実は書籍はもっていなくてCとRubyのソースを見つつ翻訳しています。1日1個ペースで進んでいます。 やっているうちにこの本が欲しくなってきました。 個人のPython力を高めるために始めましたので、間違いが含まれているかもしれません。ご指摘等ございましたら連絡[syobosyobo at gmail dot com]ください。 ちょっと方針をかえて、ctopyで訳すことにした。またまた方針をかえて、、、ctopyはあまりつかえない。ちょっといじってやらないと、出力がよくない。コメントとか入ってると、うまく変換してくれないし。 で、そのあとPythonらしい書き方で書いていこう、かと。どうなるかわかりませんが。
2010年は、パターン認識と機械学習(PRML)を読破して、機械学習の基礎理論とさまざまなアルゴリズムを身につけるという目標(2010/1/1)をたてています。もうすでに2010年も半分以上過ぎてしまいましたが、ここらでまとめたページを作っておこうと思います。ただ漫然と読んでると理解できてるかいまいち不安なので、Python(2006/12/10)というプログラミング言語で例を実装しながら読み進めています。Pythonの数値計算ライブラリScipy、Numpyとグラフ描画ライブラリのmatplotlibを主に使ってコーディングしています。実用的なコードでないかもしれませんが、ご参考まで。 PRMLのPython実装 PRML読書中(2010/3/26) 多項式曲線フィッティング(2010/3/27) 最尤推定、MAP推定、ベイズ推定(2010/4/4) 分類における最小二乗(2010/4/
Pai H. Chou Department of Electrical and Computer Engineering, University of California, Irvine, CA 92697-2625 USA chou@ece.uci.edu Abstract Design and analysis of algorithms are a fundamental topic in computer science and engineering education. Many algorithms courses include programming assignments to help students better understand the algorithms. Unfortunately, the use of traditional programm
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く