PHPとPythonとRubyの連想配列のデータ構造がそれぞれ4〜5年ほど前に見直され、ベンチマークテストによっては倍以上速くなったということがありました。具体的には以下のバージョンで実装の大変更がありました。 PHP 7.0.0 HashTable高速化 (2015/11) Python 3.6.0 dictobject高速化 (2016/12) Ruby 2.4.0 st_table高速化 (2016/12) これらのデータ構造はユーザーの利用する連想配列だけでなく言語のコアでも利用されているので、言語全体の性能改善に貢献しています1。 スクリプト言語3つが同時期に同じデータ構造の改善に取り組んだだけでも面白い現象ですが、さらに面白いことに各実装の方針は非常に似ています。独立に改善に取り組んだのに同じ結論に至ったとすれば興味深い偶然と言えるでしょう2。 本稿では3言語の連想配列の従来実
はじめに こんにちは。こんばんはかもしれません。爲岡 (ためおか) と申します。 2020年4月から株式会社グロービスにて機械学習エンジニアとして働いています。 グロービスでは機械学習技術を利用したプロジェクトや、データ基盤の運用改善プロジェクトを担当しています。 機械学習技術を利用したシステムには様々なものがあると思いますが、 現状のグロービスにおいては、ユーザのリクエストに対して機械学習を行い、 すぐに結果を返す必要があるようなシステムは扱っておらず、 ある程度の時間をかけて学習、推定した結果を非同期にアプリケーションに連携するシステムのみを扱っています。 ゆえに、今のところは機械学習技術を利用したロジックを書くときに、速さを意識することはあまりありません。 一方で、空いている時間に競技プログラミングをやっていることもあり、 高速なコードについて考えたり、書いたりすることは個人的には好
サムネイルで出してる内容がそのままこのエントリーのテーマです. Pythonアドベントカレンダー2020の9日目です. JX通信社のシニアエンジニアで, 趣味で野球*1とヘルスケア*2なデータを分析してるマンの@shinyorkeと申します. ちょっとしたデータサイエンスでもガチのR&Dでも何でもいいのですが, プレゼンするためのスライド作るとか, デモのアプリを作るのって相当ダルくないっすか? いやまあ大事な仕事なので不可避かつちゃんとやろうぜっていうのは事実*3なのですが, 手を抜くところは手を抜くべきだなというのが持論としてありますし, 「怠惰・傲慢・短気」というプログラマーの三大美徳からするとプレゼンの準備は最も「怠惰」であるべきとまで僕は思っています. そんな中, 今年はStreamlitという, 「データを見せるアプリを雑に作ろうぜ」っていうライブラリがめっちゃ流行りました(っ
These days, if you want to work in sports analytics, you need to know how to code. There's really no way around it. And while that can be scary for someone who's never written a line of code before, it's not as daunting as it seems. The reality is that there are a variety of excellent (often free!) resources for learning how to code. Some of them are very general, some are focused on a specific pr
Amazon Web Services ブログ 日本語形態素解析器 MeCab を Python から利用する際の語彙データ(UniDic)が AWS 上で Open Data として公開されました 多くの機械学習デベロッパーの方々が、AWS 上でさまざまなアルゴリズムの開発やモデルの構築を行なっています。中でも自然言語処理を行う際には、対象言語の特性に即した形で前処理を行う必要があります。日本語の自然言語処理を実施する際には、形態素解析と呼ばれる文章の分解処理を前位処理として一般的に行います。日本語形態素解析を行うためには、日本語の語彙データが必要となりますが、このデータは通常 GB 以上のサイズに及ぶ大きなサイズとなります。またこれらを用いた計算の際にも大量の GPU および CPU を必要とするため、従来こうしたモデルを構築する際には常にストレージおよびコンピューティングのリソースの
Information 2024/1/8: pandas , Polars など18を超えるライブラリを統一記法で扱える統合データ処理ライブラリ Ibis の100 本ノックを作成しました。長期目線でとてもメリットのあるライブラリです。こちらも興味があればご覧下さい。 Ibis 100 本ノック https://qiita.com/kunishou/items/e0244aa2194af8a1fee9 2023/2/12: 大規模データを高速に処理可能なデータ処理ライブラリ Polars の 100 本ノックを作成しました。こちらも興味があればご覧下さい。 Polars 100 本ノック https://qiita.com/kunishou/items/1386d14a136f585e504e はじめに この度、PythonライブラリであるPandasを効率的に学ぶためのコンテンツとして
Pythonでコードを書くときのGood/Badプラクティス こちらの記事は、DuomlyによりDev.to上で公開された『 Good and Bad Practices of Coding in Python 』の邦訳版です(原著者から許可を得た上での公開です) 元記事:Good and Bad Practices of Coding in Python ※ 記事の内容に注意すべき点と誤りがあるので、詳しくは注釈まで目を通すことをおすすめします。 (以下、翻訳した本文) この記事は元々 https://www.blog.duomly.com/good-and-bad-practices-of-coding-in-python/ に公開されたものです。 Pythonは可読性を重視した高水準のマルチパラダイムプログラミング言語です。Pythonは、「Pythonの禅」、別名ではPEP 20と
AWSは、AWSのサービスを活用した実践的なハンズオンコンテンツを多数公開しており、 日本語化もされています。 アマゾン ウェブ サービス (AWS) の実践的チュートリアル https://aws.amazon.com/jp/getting-started/hands-on/ 社内向けにコンテナやAPI Gateway初学者向けのハンズオン教材を探していたところ、 ちょうどいいチュートリアルをみつけました。 現代的なウェブアプリケーションの構築 https://aws.amazon.com/jp/getting-started/hands-on/build-modern-app-fargate-lambda-dynamodb-python/ このチュートリアル、 ECS/Fargateを活用したコンテナアプリケーションの公開 Codeサービスを活用したCI/CDパイプラインの構築 Ama
はじめに 2020/8/12に発売されたImpractical Python Projects: Playful Programming Activities to Make You Smarterの日本語訳書である、「実用的でないPythonプログラミング」をひょんな事から献本していただく事になった。(訳者が同僚である) 実用的でないPythonプログラミング: 楽しくコードを書いて賢くなろう! 作者:ヴォーン,リー発売日: 2020/08/12メディア: 単行本 ありがちなプログラミング初学者向けの本から1段上がった中級者向けの良い本だと感じたので、当ブログでたまにやっている筆者、訳者に媚びを売るシリーズの一貫として、感想を記す。 書籍の概要 「実用的でないPythonプログラミング」は、想定する中級レベルのアルゴリズムの問題を例に取り、Pythonでの美しいコードの書き方や、コンピュ
Announcing the Consortium for Python Data API Standards An initiative to develop API standards for n-dimensional arrays and dataframes 11 minute read Published: 17 Aug, 2020 Over the past few years, Python has exploded in popularity for data science, machine learning, deep learning and numerical computing. New frameworks pushing forward the state of the art in these fields are appearing every year
本記事について 競技プログラミングサイトの AtCoder にはプログラミング入門教材の「AtCoder Programming Guide for beginners (APG4b)」があります。プログラミング入門教材として非常に完成度が高く、競技プログラミングの主流言語である C++ が使われています。 そこで、本記事では APG4b を元に、それの Python 版を書きました。基本的には APG4b を読み進めて、Python 独自の部分は本記事を参考にして頂ければと思います。 大部分が APG4b を元にしているため、本記事が問題あるようでしたらすぐに削除します。 各節の見出しが本家へのリンクになっています。 節タイトルは本家に合わせているため、Pythonの用語と一部異なる部分もあります。 目次 1.00.はじめに 1.01.出力とコメント 1.02.プログラムの書き方とエラー
Python Python, コード 48649view 【2025】コピペOKなPythonのコード一覧!機械学習とPythonのコツも解説 AI機械学習を用いた経営問題の解決や、3D CAD/CAMソフトウェア、IoTを通じた製造業向けの「設計から製造」までの効率化など、幅広い業種へ多数のコンサルティングの経験を持つ。手塚治虫AIプロジェクトの「TEZUKA2020」にてプロジェクトマネジメントを担当した他、製造業の画像AI、道路インフラの異常検知AI、建築関係の見積もりAI等、様々な企業様向けのコンサルティングを実施。株式会社VOSTの立ち上げメンバーで、最新の技術を複合的に融合し、わかりやすく伝えることをモットーに活動している。 今回は、機械学習でよく使うPythonのプログラムコードをアルゴリズム別に紹介していきます。 そして、機械学習といえばScikit-Learn。Sciki
2020年6月17日~7月17日にかけて、ITに携わる全てのエンジニアを対象にしたMicrosoft主催の大規模Techカンファレンス「de:code」が開催されました。セッション「未来を生き抜く子どもの教育、マインクラフトで扉を開くコンピューターサイエンスの学び。」では、日本マイクロソフト株式会社 パブリックセクター事業本部 文教営業統括本部 ラーニングソリューションスペシャリストの石山将氏が登壇し、人気ゲーム「マインクラフト」を活用したプログラミング教育の内容や意義について語りました。 マインクラフトを用いたコンピューターサイエンス学習石山将氏(以下、石山):日本マイクロソフト株式会社にてラーニングソリューションスペシャリストを務めさせていただいている石山と申します。 はじめに軽く自己紹介させていただきます。ラーニングソリューションスペシャリストは、マイクロソフト製品を軸として、日本の
何ヶ月か前にTwitterのタイムラインに流れてきたのですが、それっきり話題を聞かないので検証してみることにしました。 ちなみに、個人的に普段使って慣れているのは、癖が少なくて扱いやすい scikit-image です。 (OpenCVはBGRがデフォルトなので基本的に避けたいですし、PILは癖が強めなのであまり好きではないです) 高速の画像処理ライブラリを使うモチベは、もちろん Kaggle です。 特に画像の読み込みが速いと、時間短縮に直結するので個人的に嬉しいです。 Lyconとは C++で書かれたPython用の軽量画像処理ライブラリらしいです。 PyPI にあるので pip install ですぐに使えます。(一応依存関係も気にしなきゃいけないかも) github.com 性能の割にスターが控えめな気がする。 試しに使ってみる 多少の実戦を仮定して、Kaggle の Notebo
今年読んだデータサイエンスおよびPython本の中でも最良の一冊でした. ホントに待ち望んでいた一冊でした. 実は密かに楽しみにしてた(待ち望んでいた)*1, 「Pythonによる医療データ分析入門」, 一通り読ませていただきましたので, Pythonによる医療データ分析入門の感想 分析100本ノック後にやると良いこと 探索的データサイエンスはデータサイエンスに関わる人すべてに関係する準備運動であり入り口であること 的な話を綴りたいと思います. なお, 最初に断っておくと, 新型コロナウイルス含む, 感染症とか流行病の話は一切触れておりません! このエントリーは純粋に「Pythonを使ったデータサイエンス」を志向した方向けのエントリーとなります. 新型コロナウイルスだの感染症関連だのを期待されている・そう思った方はぜひ他のページなどを見ていただけると幸いです. このエントリーのダイジェスト
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く