タグ

レコメンデーションに関するmfhamのブックマーク (7)

  • データ & アナリティクス | アクセンチュア

    データ分析から導き出されたインサイト無しにAI人工知能)の活用は始まりません。私たちは、各業界知識とデータ・アナリティクス技術を駆使しデータドリブン経営を強力に支援します。 データ、アナリティクス、AIは企業にとって競合他社との差別化を図るかつてないほど大きな要因になっています。今日の経営幹部が効率を向上しながら新たな収益源を開拓し、新しいビジネスモデルをタイムリーに構築する方法を模索する中、価値を生み出し成長を続ける企業には「データ活用」という共通項があります。私たちは、無数のデータから企業にとって当に必要なデータを活用するための方法を知っています。 将来を見据えたオペレーション体制を備えている企業の半数以上(52%)は、すでにデータとアナリティクスを大規模に活用しています。データとAIに関する取り組みをビジネス戦略に沿って実施することで投資利益率を迅速に最大化し、最終的にはAIをビ

    データ & アナリティクス | アクセンチュア
  • http://cresol.netsket.com/description.html

  • 株式会社ALBERT(レコメンドエンジン)

    データ分析から導き出されたインサイト無しにAI人工知能)の活用は始まりません。私たちは、各業界知識とデータ・アナリティクス技術を駆使しデータドリブン経営を強力に支援します。 データ、アナリティクス、AIは企業にとって競合他社との差別化を図るかつてないほど大きな要因になっています。今日の経営幹部が効率を向上しながら新たな収益源を開拓し、新しいビジネスモデルをタイムリーに構築する方法を模索する中、価値を生み出し成長を続ける企業には「データ活用」という共通項があります。私たちは、無数のデータから企業にとって当に必要なデータを活用するための方法を知っています。 将来を見据えたオペレーション体制を備えている企業の半数以上(52%)は、すでにデータとアナリティクスを大規模に活用しています。データとAIに関する取り組みをビジネス戦略に沿って実施することで投資利益率を迅速に最大化し、最終的にはAIをビ

    株式会社ALBERT(レコメンドエンジン)
  • ソーシャルメディア セカンドステージ:【第2回】レコメンデーションの虚実(2)?レコメンデーションの分類 (1/2) - ITmedia アンカーデスク

    レコメンデーションの代表的手法 レコメンデーションには、いくつかのアプローチがある。とりあえずそのアプローチを俯瞰してみると、おおむね以下の5つに分類することができる。 (1)ルールに基づくレコメンデーション (2)コンテンツベースのフィルタリング (3)協調フィルタリング (4)統計学的なアプローチ (5)行動ターゲティング (6)ソーシャルネットワーキング ひとつずつ説明していこう。 (1)のルールに基づくレコメンデーションというのは、「ビジネスルール方式」とか「インテンショナル(意図的な)レコメンド」などと言った呼び方もある。例えば「美容室に髪を切りに来た人に、ヘアケア製品を勧める」「プリンターを買った人に、インクトナーを勧める」など、最初に「ある製品を買った人、ある行動をした人には、この製品やサービスを勧める」というルールを定めておく方法だ。このレコメンデーションはわかりやすいけれ

    ソーシャルメディア セカンドステージ:【第2回】レコメンデーションの虚実(2)?レコメンデーションの分類 (1/2) - ITmedia アンカーデスク
  • 会誌「情報処理」の特集『利用者の好みをとらえ活かす-嗜好抽出技術の最前線-』のメモ - sta la sta

    情報処理学会の会誌「情報処理」を毎月読んでるわけですが(会員だしね)、今月号の特集『利用者の好みをとらえ活かす-嗜好抽出技術の最前線-』が面白かったので備忘録代わりにメモ。 特集記事一覧はこちら。 0. 編集にあたって(土方嘉徳) 1. 嗜好抽出・情報推薦の基礎理論:1)嗜好抽出と情報推薦技術(土方嘉徳) 1. 嗜好抽出・情報推薦の基礎理論:2)協調フィルタリングの課題:プライバシー,サクラ攻撃,評価値のゆらぎ(神嶌敏弘) 2.ネットワーク上のユーザ行動に着目した嗜好抽出・情報推薦:1)協調フィルタリングを用いたレコメンドサービスの導入事例と課題(市川裕介) 2.ネットワーク上のユーザ行動に着目した嗜好抽出・情報推薦:2)嗜好情報に基づくニュースコンテンツの推薦とその応用-画一的な便利さと多様な嗜好への適応-(河合由起子) 3.実世界上のユーザ行動に着目した嗜好抽出・情報推薦:1)AV機器

    会誌「情報処理」の特集『利用者の好みをとらえ活かす-嗜好抽出技術の最前線-』のメモ - sta la sta
  • 協調フィルタリング技術を掘り下げる--ECサイトのレコメンド技術を考える(3)

    印刷する メールで送る テキスト HTML 電子書籍 PDF ダウンロード テキスト 電子書籍 PDF クリップした記事をMyページから読むことができます 前回は、ECサイトのレコメンド技術の種類として、ルールベース方式、コンテンツベースフィルタリング方式、協調フィルタリング方式、ベイジアンネットワーク方式の4つを紹介した。今回は、これらのレコメンド方式をより細分化した上で、協調フィルタリングのロジックについて解説したい。 4つのレコメンド方式は、「レコメンドするために必要な情報は何なのか」、「何をもってレコメンドするためのルールとするか」という切り口で分類していると解説した。それぞれのレコメンド方式は、さらに「どの判別属性を軸にレコメンドアイテムを決定しているのか」という切り口によって細分化できる。その判別属性とは、アイテムベース、ユーザーベース、ユーザー提示情報ベースの3つだ。 例えば

    協調フィルタリング技術を掘り下げる--ECサイトのレコメンド技術を考える(3)
  • 協調フィルタリングによるリコメンデーション

    潜在的な顧客にいかにその人が欲しい商品を勧めるかは広告主にとって重要な要素である。この手法はインターネットユーザのサイト閲覧履歴やクリック履歴などをもとにユーザの嗜好パターンを学習し、そのユーザが好みそうな商品を推薦するための一般的な手法である。 この手法では、複数のユーザのサイト閲覧履歴データを用いる。図1は、縦軸をユーザ、横軸をWebページとして、履歴のうちどのユーザがどのWebページをクリックしたかを表している。「1」はクリックしたことを表し、「0」はそうでないことを表す。ここで、データの埋まっていない部分について、他人のデータを用いてその人の嗜好を予測するのが手法である。 このような協調フィルタリングの手法はいくつかあるが、代表的なのが相関係数法である。これは、ユーザAとユーザBの嗜好パターンに高い相関性がある場合に、ユーザAがクリックしたサイトXをユーザBに推薦するという方法で

  • 1