タグ

アルゴリズムに関するmikage014のブックマーク (80)

  • スタックとキューを極める! 〜 考え方と使い所を特集 〜 - Qiita

    0. はじめに 基的なデータ構造として大学の授業や情報系の各種試験などによく登場するものの一つに、スタックとキューがあります。 スタックとキューについて学ぶ場面の多くでは、「スタックは LIFO (Last-In-First-Out)、キューは FIFO (First-In-First-Out)」と呪文のように覚えたり、 スタックは、例えば超忙しいときに新しい課題がぶっこまれたときとかにとりあえずそれを先に片付けるような感じ キューは、人気ラーメン屋に並ぶ人々の待ち行列のように先に並んだ人が先にお店に入る感じ という風に、日常の事物に対応づけて説明したりする文化が多く見受けられます。「タスクが次々と降ってくる状況をどう扱っていくか」というのは、日常生活を生きる人間にとっても、コンピュータ上の処理であっても自然に登場する普遍的な問題意識ですので、その最も基的な思想であるところのスタックや

    スタックとキューを極める! 〜 考え方と使い所を特集 〜 - Qiita
  • strlen() の深淵 - Qiita

    あらまし strlen() という関数がある。御存知の通り、文字列の長さを算出する標準 C ライブラリの関数だ。 やってることは単純で、例えば以下のように実装できる。 size_t strlen_simple(const char* str) { const char* p = str; while (*p) ++p; return size_t(p - str); } '\0' が見つかるまでポインタを進め、初期位置との差分を返すだけだ。これで機能的には std::strlen() と同等である。 では、速度的にはどうだろう?適当にベンチマークを書いて MSVC 2022 でコンパイル&実行するとこうなった。

    strlen() の深淵 - Qiita
  • 徐々に高度になるリングバッファの話 - Software Transactional Memo

    リングバッファのイメージ図 1. リングバッファとは何か 機能的にはFirst In First Out (FIFO)とも呼ばれるキューの一種であるが、リング状にバッファを置いてそれの中でReadとWriteのインデックスがグルグルと回る構造をとる事によって容量に上限ができることと引き換えに高速な読み書き速度を得たものである。キューを単に実装するだけなら山ほど方法があって線形リストを使ってもいいしスタックを2つ使っても原理的には可能だ。その中でもリングバッファを用いた方法の利点はひとえに性能の高さでありメモリ確保などを行わないお陰でシステム系の様々な場所で使われている。 これの実装自体は情報系の大学生の演習レベルの難度であるが少し奥が深い。まずリングバッファのスタンダードなインタフェースと実装は以下のようなものである。 class RingBuffer { public: explicit

    徐々に高度になるリングバッファの話 - Software Transactional Memo
  • インクリメンタルに複数の時系列データに対する平均・標準偏差を計算する

    はじめに データ分析を行う際、それらのデータの特徴を知るために頻繁に平均や分散(データのばらつき)を計算します。 それらは、n個のデータをx_1,x_2,\ldots,x_nと表すと、それぞれ次のような式で計算できました。 平均 m_n = \frac{1}{n}\sum_{i=1}^{n}x_i 分散 \sigma_{n}^2 = \frac{1}{n}\sum_{i=1}^{n} (x_i - m_n)^2 この計算式を愚直にコード(rust)に落とし込むと次のように記述できます。(もしrustを書いたことない方でもプログラミングに馴染みのある方であればなんとなくわかると思います。) // 平均 fn mean(data: &Vec<f64>) -> f64 { let mut sum: f64 = 0.0; for i in 0..data.len() { sum += data[i

    インクリメンタルに複数の時系列データに対する平均・標準偏差を計算する
  • アルゴリズムの世界地図 - Qiita

    こんにちは、square1001 です。 現在は東京大学の学部 1 年生をしています。私は中学 1 年の頃からプログラミングをやっていて、特にアルゴリズムが大好きです。AtCoder をはじめとする 競技プログラミング にも取り組んでいて、中高生のときは 情報オリンピック にも参加していました。 記事では、アルゴリズムや競技プログラミングに興味がある方、あるいはプログラミングをやっているけどアルゴリズムをよく知らない方に アルゴリズムはどんなもので アルゴリズムを使うとどんな問題が解けて アルゴリズムが地球のように広く、多様で、奥深く、そして楽しいこと を知ってもらおうと思っています。 アルゴリズムの世界へようこそ 時代は 2020 年代に突入し、急速に IT 化 や DX が進んでいく中で、問題を効率的に解くアルゴリズム技術の重要性が、ますます高まっています。そして、アルゴリズムは、世

    アルゴリズムの世界地図 - Qiita
  • 『Skyrim』のキツネはプレイヤーをお宝に導くか。発売直後から囁かれてきた噂の真相を元開発者が明かす - AUTOMATON

    『Skyrim』のキツネはプレイヤーをお宝に導くか。発売直後から囁かれてきた噂の真相を元開発者が明かす - AUTOMATON
  • Binary search with modern processors

    第16回 StringBeginners での発表資料

    Binary search with modern processors
  • 異常検知入門と手法まとめ - Qiita

    異常検知について勉強したのでまとめておきます。 参考文献 下記文献を大いに参考にさせていただきました: [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] 井手. "入門 機械学習による異常検知―Rによる実践ガイド" コロナ社(2015) [3] 井手,杉山. "異常検知と変化検知 (機械学習プロフェッショナルシリーズ)" 講談社サイエンティフィク(2015) [4] 比戸. "異常検知入門" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev

    異常検知入門と手法まとめ - Qiita
  • アニメーションで感覚的にハッシュ関数「SHA-256」の算出過程を理解できる「SHA-256 Animation」

    電子証明書の暗号化やブロックチェーンは、入力された値からまったく異なる値であるハッシュ値を算出する「ハッシュ関数」によって成り立っています。エンジニアのGreg Walker氏が、代表的なハッシュ関数である「SHA-256」のハッシュ値算出の過程をアニメーションで表示できるプログラム「SHA-256 Animation」を公開しています。 GitHub - in3rsha/sha256-animation: Animation of the SHA-256 hash function in your terminal. https://github.com/in3rsha/sha256-animation 実際にプログラムを動かしてみたムービーが以下のものです。 ハッシュ値が生成される様子を「SHA-256 Animation」で観察するとこんな感じ - YouTube プログラムを動かす

    アニメーションで感覚的にハッシュ関数「SHA-256」の算出過程を理解できる「SHA-256 Animation」
  • アルゴリズムビジュアル大事典

    このサポートページでは、マイナビ出版発行の書籍「アルゴリズムビジュアル大事典」にて作成しましたシンボル、アニメーション、疑似コードを掲載いたします。また、内容のアップデートを行ってまいります。詳しい解説は、書をご参考にしてください。 アニメーションコントローラの使い方はクイックマニュアルでご確認頂けます。 補足情報が表示されているトピックにつきましては、ご注意ください。その他の訂正等は正誤表をご覧ください。ご質問、不具合等のご報告は、ご遠慮なくy.watanobe@gmail.com(渡部)までお送りください。

  • AVX-512を用いた、たぶん世界最速のBase64エンコード実装について - Qiita

    この記事で紹介するのは高スループットなBase64エンコードの実装方法です。 Base64は、Webの世界を始めとして、世界中さまざまな箇所で使われているエンコード方式です。とてもよく使われるので、高速化についてもしばしば研究されてきたようです。 高速化の最新成果として、2019年10月に、Wojciech Muła, Daniel Lemireによる新しい論文がarxivに投稿されました。なかなか強烈なタイトルが付いています。 Base64 encoding and decoding at almost the speed of a memory copy 論文の主張としては、x86 CPUの持つ最新の命令群を駆使することで、非常に高効率なBase64エンコード・デコードが実現できたというものです。このQiita記事では論文の内容の一部を紹介します。 Base64は問題としては単純に見え

    AVX-512を用いた、たぶん世界最速のBase64エンコード実装について - Qiita
  • スーパーマリオのジャンプのアルゴリズム - Qiita

    先日、気持ちのいいジャンプを目指してというQiitaの記事を見かけました。記事中では、マリオのジャンプについても触れられています。マリオというと、マリオブラザースやスーパーマリオブラザース等々、色々あるのですが、これはおそらくスーパーマリオブラザースの事だと思われます。ジャンプアクションゲームといったらスーマリですね。 そのマリオのジャンプの仕組みは「マリオの速度ベクトルを保存しておいて座標を計算するんじゃなくて~」と書かれていて、別サイトのブログへのリンクが張られています。 マリオのジャンプ実装法とVerlet積分 ただ、この記述については不正確であるという別のブログもあったりします。 マリオの完コピvol.28 ジャンプの解析と修正 ホントのところはどうなんでしょうか?世界で最も有名なゲームジャンプがどのように処理されているのか気になったので調べてみることにしました。 原典にあたる

    スーパーマリオのジャンプのアルゴリズム - Qiita
  • 解析不能!30年以上前のレトロゲームから謎の「自動生成アルゴリズム」が見つかる - ナゾロジー

    Point ■レトロゲームには容量不足や技術的制約を解決するため、現代の我々から見ても解析できない謎の技術が使われていることがある ■今回、ATARI2600から82年に発売されたゲーム『Entombed』に、全くロジックが不明の迷路自動生成プログラムのコードが発見された ■迷路の壁を完全ランダムに配置すればクリア不能になってしまうが、このプログラムがなぜ通行可能なパターンで迷路を生成しているかは、まったくの謎だという ほんの数十年前、コンピュータ関連の技術が飛躍的に向上しました。 特にデータ容量の向上はめざましく、現代の若い人たちにとって容量の単位は「ギガ」が標準になっています。 しかし初代のスーパーマリオの全ゲーム容量は40KB、初代ドラゴンクエストの全容量は64KBでした。 これはこの記事のトップに貼られている画像の容量よりも遥かに小さい容量です。 レトロゲームの開発は、そんな小さな

    解析不能!30年以上前のレトロゲームから謎の「自動生成アルゴリズム」が見つかる - ナゾロジー
  • プログラマの採用面接で聞かれる、データ構造とアルゴリズムに関する50以上の質問 | POSTD

    情報科学科の卒業生やプログラマの中には、UberやNetflixのような新興企業や、 AmazonMicrosoftGoogle のような大企業や、InfosysやLuxsoftのようなサービスを基とする企業で、プログラミング、コーディング、ソフトウェア開発の仕事に就きたいと考える人が大勢います。しかし、実際にそういった企業で面接を受ける場合、大半の人が プログラミングに関してどのような質問をされるか 見当もつきません。 この記事では、 新卒生からプログラマになって1〜2年までの 経験値が異なる人たち向けに、それぞれの プログラミングの面接でよく聞かれる質問 をいくつか紹介していきます。 コーディングの面接では、主に データ構造とアルゴリズムに基づいた質問 がされますが、 一時変数を使わずにどのように2つの整数をスワップするのか 、というような論理的な質問もされるでしょう。

    プログラマの採用面接で聞かれる、データ構造とアルゴリズムに関する50以上の質問 | POSTD
  • とても強い計算量クラスのコンピュータとその実現方法 - Qiita

    この記事は武蔵野アドベントカレンダー19日目の記事です。 物理のステートメントはだいぶ雑ですが、計算のステートメントには一応正確さに気を使って書いているつもりです。何か誤りがあった場合は、@iKodackまでご連絡いただけると幸いです。 (2018/12/22に「宇宙破壊コンピュータはセールスマン巡回問題の最適化問題を解けるか? 」「時間遡行コンピュータで無限ループすると何が起きるか?」を記事末尾に追加しました。) (2018/12/28に「宇宙破壊コンピュータは答えが無い場合に全ての宇宙を破壊する?」について記事末尾に追加しました。) 前書き より速い計算機が欲しい、という欲求は全ソフトウェアエンジニア共通であることが知られています。 最近、業務において500GBのSSDや16GBのメモリを最低水準にするべきではないか、という議論がネットで活発になされていますが、生産性を限界まで高める限

    とても強い計算量クラスのコンピュータとその実現方法 - Qiita
    mikage014
    mikage014 2018/12/21
    "ラノベで敵に時間遡行者がいたら囲碁の勝負を挑んで相手の脳のスタックを爆破しましょう"
  • リレーショナルデータベースの仕組み (1/3) | POSTD

    リレーショナルデータベースが話題に挙がるとき、私は何かが足りないと思わずにはいられません。データベースはあらゆるところで使われており、その種類も、小規模で便利なSQLiteからパワフルなTeradataまで様々です。しかし、それがどういう仕組みで機能しているかを説明したものとなると、その数はごくわずかではないでしょうか。例えば「リレーショナルデータベース 仕組み」などで検索してみてください。ヒット数の少なさを実感できると思います。さらにそれらの記事は短いものがほとんどです。逆に、近年流行している技術(ビッグデータ、NoSQLJavaScriptなど)を検索した場合、それらの機能を詳しく説明した記事はたくさん見つかると思います。 リレーショナルデータベースは、もはや大学の授業や研究論文、専門書などでしか扱われないような古くて退屈な技術なのでしょうか? 私は開発者として、理解していないものを

    リレーショナルデータベースの仕組み (1/3) | POSTD
  • コーディング面接とSnakeゲームに唯一共通すること | POSTD

    80年代か90年代に生まれた方ならおそらく、「Snake」というゲームのことをご存じでしょう。「ご存じ」とはつまり、Nokia 3310のちっぽけな画面上でたわいもない巨大ヘビを育てるのに膨大な時間を費やしていたのではないかということです。Nokiaの携帯電話について、皆さんは他にどんな特徴を覚えていますか? バッテリーが長持ちしたことではないでしょうか。 Nokiaはとても”原始的な”携帯電話であったにもかかわらず、バッテリーを使い果たすことなくSnakeゲームで何時間も遊べたのは、どういう訳だったのでしょう? 理由の大部分は、優れた強固なコンポーネントのおかげでした。しかし、貢献度はそれより低く、あまり語られることもありませんが、スライディングウィンドウと呼ばれる手法も長時間のプレイに役立っていたのです。 Snakeだけを扱った記事を1書きたいのは山々ですが、実は記事では後者の、魅

    コーディング面接とSnakeゲームに唯一共通すること | POSTD
  • アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita

    今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場

    アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita
  • ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回はソートについて記します。 0. はじめに データ構造とアルゴリズムを学ぶと一番最初に「線形探索」や「ソート」が出て来ます。これらのテーマは応用情報技術者試験などでも頻出のテーマであり、アルゴリズムの Hello World とも呼ぶべきものです。 特にソートは、 計算量の改善 ($O(n^2)$ から $O(n\log{n})$ へ) 分割統治法 ヒープ、バケットなどのデータ構造 乱択アルゴリズムの思想 といった様々なアルゴリズム技法を学ぶことができるため、大学の授業でも、アルゴリズム関連の入門書籍でも、何種類ものソートアルゴリズムが詳細に解説される傾向にあります。記事でも、様々なソートアルゴリズムを一通り解説してみました。 しかしながら様々な種類のソートを勉強するのもよいが、「ソートの使い方」や

    ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita
  • 画像のノイズを落としたり容量を小さくしたりするにはどのようなコードを書く必要があるのか?

    手書きのメモをスキャンししたときにどうしても発生してしまうノイズを取り除くとともに、ファイルサイズも減らす方法を、スワースモア大学准教授のMatt Zuckerさんが具体的に公開しています。 Compressing and enhancing hand-written notes https://mzucker.github.io/2016/09/20/noteshrink.html Zuckerさんが持つクラスの中には教科書を使用せずに行うものもあり、そうした場合Zuckerさんは「学生書記官」を任命してノートを取ってもらい、スキャンしてアップロードするそうです。 例えば、以下の画像のようなページをスキャンする場合を考えてみます。この画像は300DPIでスキャンされており、約7.2MBのPNG形式で保存されています。それを画質85でJPGに変換すると約790KBになりますが、1ページで7

    画像のノイズを落としたり容量を小さくしたりするにはどのようなコードを書く必要があるのか?