
またしても新聞記事の用語についての記事です。 前回は朝日新聞記事について、明確に批判をしましたけれど、今回は些細な事です。専門用語の翻訳を間違えているという、よくあることです。まあ日本の将来を担う新聞社さんでもないしね。 http://jp.wsj.com/Life-Style/node_441748 ウォール・ストリート・ジャーナル誌の翻訳記事です。はてなのぶくまを見ると、ほとんどみなさん記事の間違いを指摘し正しく理解していらっしゃるので、このエントリ書いた意味あるかなあと、書き終えて読み直しながら今思ってますが、まあいいや。 英語原文は、最近の研究成果の素晴らしい解説記事です。原文は、WSJ日本版からのリンクでは「有料」となっているのに、こちらでは読めるのはどうしたことなんでしょうか。 http://online.wsj.com/article/SB100014240527023043
遺伝的アルゴリズム(いでんてきアルゴリズム、英語:genetic algorithm、略称:GA)とは、1975年にミシガン大学のジョン・H・ホランド(John Henry Holland)によって提案された近似解を探索するメタヒューリスティックアルゴリズムである。人工生命同様、偶然の要素でコンピューターの制御を左右する。4つの主要な進化的アルゴリズムの一つであり、その中でも最も一般的に使用されている。 遺伝的アルゴリズムはデータ(解の候補)を遺伝子で表現した「個体」を複数用意し、適応度の高い個体を優先的に選択して交叉・突然変異などの操作を繰り返しながら解を探索する。適応度は適応度関数によって与えられる。 この手法の利点は、評価関数の可微分性や単峰性などの知識がない場合であっても適用可能なことである。 必要とされる条件は評価関数の全順序性と、探索空間が位相(トポロジー)を持っていることであ
探索(たんさく、英: search)とは、特定の制約条件を満たす物を見つけ出す行動のこと。 何か問題を解くに当たって、有効な解析的な解法を用いることのできない場合は、試行錯誤によって解を得る場合もある。 一部のアルゴリズムは、元々、機械学習と並んで人工知能の分野のアルゴリズムであるが、現在はその他の分野にも応用されている。類義語として検索(英: search)も参照。 探索アルゴリズムとは、大まかに言えば、問題を入力として、考えられるいくつもの解を評価した後、解を返すアルゴリズムである。 まず解くべき問題を状態(英: state)と状態変化(行動、英: action)に分ける。 最初に与えられる状態を初期状態(英: initial state)といい、目的とする状態は最終状態(ゴール、英: final state, goal)と呼ばれる。 初期状態から最終状態に至る、状態及び状態変化の並び
進化的アルゴリズム(しんかてきアルゴリズム、evolutionary algorithm、EAと略記)は進化的計算の一分野を意味し、人工知能の一部である。個体群ベースのメタヒューリスティックな最適化アルゴリズムの総称である。そのメカニズムとして生殖、突然変異、遺伝子組み換え、自然淘汰、適者生存といった進化の仕組みに着想を得たアルゴリズムを用いる。最適化問題の解の候補群が生物の個体群の役割を果たし、コスト関数によってどの解が生き残るかを決定する。それが繰り返された後、個体群の進化が行われる。 EAの例を以下に示す。これらの技法は本質的には同様だが、実装の詳細は異なっており、適用される問題の分野が異なる。 遺伝的アルゴリズム これは EA の中でも最も一般的な手法である。問題の解を探索するにあたって数値の列を使用し(2進数を使うのが古典的だが、解決すべき問題に合わせて最適な形式が選択され、2進
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く