You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
ChainerがMicrosoft Azure, Windows に対応 #azure#Chainer#CNTK#Deep Learning#microsoft#Prefered Networks 2017年 06月 19日 fuji Chainerはどういう環境で動くであろうか。 Installation Guideを見ると、 Ubuntu 14.04/16.04 LTS 64bit CentOS 7 64bitとあるのだが、日本で特に多いWindowsが載っていない。 Windowsをサポートしていなくても、クラウド上のChainerを使って、手元のPCはWindowsというのはできるようだが、私はやったことがない。 それが、ついに、ChainerがMicrosoft Azure および Windows にも対応するようになるようだ。 詳細は、ASCII.jp の 「Chaine
深層学習(ディープラーニング)フレームワーク「Chainer」や「Deep Intelligence in-Motion(DIMo)」を開発するPreferred Networks(PFN)は5月23日、米マイクロソフトとディープラーニング分野で戦略的協業をすると発表した。Microsoft AzureとChainerとの親和性を高めるための技術協力のほか、ディープラーニング分野の人材育成、ChainerとDIMoのマーケティングで協力する。 具体的には、2017年夏までに、ChainerをAzure IaaS上へワンクリックで展開するためのテンプレートの提供や、データサイエンス仮想マシン(ディープラーニングツールを構築済みのUbuntuベースのAzure仮想マシンイメージ)へのChainer搭載、SQL ServerのChainer対応、ChainerのWindows対応を行う。また、A
2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一本化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod
はじめに 昨今,DNNs(Deep Neural Networks)の進歩が目覚ましくあらゆる分野で成功を収めています. 良く耳にするのは,画像分類や音声認識の分野ですが,対話システムも例外ではなくなりました. Pythonのライブラリ環境が充実しつつある今,DNNsを用いた対話システムの構築について簡単に紹介したいと思います. 対話システムのためのDNNsモデル 対話システムを構築するためのDNNsのモデルは大きく分けて2つあります. 大量の応答候補に対するランキング学習 -> 入力に対して応答候補文をそのまま選択 発話と応答のペアから,Encoder-Decoderモデルを学習.-> 入力に対して単語単位で応答発話生成 本記事では,後者のEncoder-Decoderモデルについて扱います. Chainerなどのライブラリが充実したおかげで,発話と応答のペアとなるデータさえあれば,誰で
新年を迎えたので、何か新しいことをしようということで選んでみたのがChainerである。 去年の春、AlphaGoから人工知能の狂乱ブームが始まり、猫も杓子も Deep Learning を勉強しているようで、オライリージャパンの『ゼロからはじめるDeep Learing』がやたらに売れている。 もう4万部を突破しているようだが、あの本を4万人もの人が読んで理解できるなら、日本のIT技術者の層は予想より遥かに厚かったことになるが、実際には人工知能ブームに流されて買っただけで積読状態ではないかと思っている。 Deep Learning(以下DL)でよく利用されている言語がPythonである。といっても、Pythonの基本部分ではなく、NumPyを始めとする拡張部分を使いまくってDLを実現している。つまり、Pythonの基本部分を使いこなすだけでDLのコードが書けるわけではない。 ちょっと勉強
こんにちは、データチームの後藤です。この記事では、一般物体認識で優秀な成績を収めた代表的なニューラルネットワークモデルを、ファッションアイテムの画像データに対して適用し、どのアーキテクチャが有用か、どれだけの精度を出せるのかを調べる実験を行います。 今回は、 AlexNet Network In Network GoogLeNet DenseNet の4つのアーキテクチャを試しました。 背景 iQONでは毎日500以上のECサイトをクロールし、一日平均1万点もの新着アイテムを追加しています。この過程で、新着アイテムがiQONのどのカテゴリに属するのかを決める必要がありますが、この作業を人手で行うと膨大なコストになってしまいます。この問題に対して我々は、アイテムの名前や説明文、画像データを活用してカテゴリを判別する仕組みを作りました。とくに画像データによる判別には、畳み込みニューラルネットワ
光センサがコースを検知したら左曲がりに進行、検知しなかったら右回りに進行、という味気ないやつ 青色 僕らの期待の新星DQN 入力:[[光センサの検知/不検知][前回とった行動]]を1セットに過去5個分 : 20次元 隠れ層:50ユニット x 2枚ほど <実は前の記事で隠れ層が1枚なのに2枚と勘違いしてました> 出力:左曲がり進行、直進、右曲がり進行 ご褒美:コースから5px以内 +1ポイント 10px以内 +0.5ポイント 壁際2px以内 -1ポイント そして、壁にぶつかったら張り付き続けてしまい学習時間に支障が出そうになるのでコース上に位置リセット。 現状の状況 いくら直近の過去のことを覚えていても自分の位置もわからない一つ目お化けじゃ迷子になる様子? せめて2つ以上センサーがあるようなライントレーサーにしたり、自分の位置を計算したりするなど何らかの手段で、自分とコースの位置関係を把握で
こんにちは 本業はプログラマじゃない人です。 テレビで「ディープラーニング」というキーワードがバズっているときに、 分散深層強化学習でロボット制御 | Preferred Researchを見て、 試してみたいことが出てきたので、いきなりクローンとは言わず、まず簡単なものから作った。 ⇒ 置き場:DeepQNetworkTest 狙い Pythonも初めて!Chainerも初めて! プログラミングの作法すら分からないのに周囲にソフト屋さんがいない! でも、自走機械に強化学習というのをやらせてみたい! ⇒ とりあえず公開すれば教えてくれる人が出てくるかもしれない 慣性とか持っている機械を動かして見せてる事例が本当に少ない(気がする) ⇒ 次のステップで入れてみよう やったこと ConvNetJS Deep Q Learning Reinforcement Learning with Neur
今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く