Share your apps with the whole worldPublic apps onlyTotally free-> Log in with GitHub

データの可視化はなぜ必要なのでしょうか。それは、そのデータを生み出している事象をより正確に理解したり、機械学習での予測に用いる際に、使うべきデータを適切に選んだりするためです。そのためにはまず、データを可視化することによって、データの大まかな特徴をつかんだり、データ同士の相関関係を知ることが必要なのです。 さて、Pythonでデータを可視化する際には、まず、Pandasでデータを集計・加工します。その上で、matplotlib(マットプロットリブ)や今回ご紹介するseaborn(シーボーン)というライブラリで可視化を行います。seabornは特に、手軽に美しく可視化ができるライブラリなので、本稿でseabornがいかに魅力的なライブラリであるかを学びましょう。 seabornの特徴 seabornとは、Pythonのデータ可視化ライブラリで、同じPythonの可視化ライブラリであるmatp
Bokeh documentation# Bokeh is a Python library for creating interactive visualizations for modern web browsers. It helps you build beautiful graphics, ranging from simple plots to complex dashboards with streaming datasets. With Bokeh, you can create JavaScript-powered visualizations without writing any JavaScript yourself. Finding the right documentation resources# Bokeh’s documentation consists
(An English translation is available here.) Pythonでデータ分析をする際に、欠損値の出現パターンを簡単に可視化する方法を紹介します。 はじめに データ分析をする際に、欠損値に対処する必要があります。方法は様々あります1が、対処法を考える前に、欠損値の数や出現パターンを知る必要があります。この記事では、Pythonを用いてデータ分析をする際に、欠損値の出現パターンを簡単に可視化する方法を紹介します。 なお、この記事で紹介する方法については、私のGitHub repoにJupyter notebookをアップロードしてあります。下のバッジをクリックすると、Binderで実行できます。 前提 以下、Kaggleから入手できるTitanicのtrain datasetを例として紹介します。以下のコードと実行結果があるものとします。
本ページでは、Python のデータ可視化ライブラリ、Seaborn (シーボーン) を使ってヒートマップを出力する方法を紹介します。 Seaborn には、ヒートマップの可視化を行うメソッドとして seaborn.heatmap と seaborn.clustermap の 2 つが実装されています。seaborn.heatmap は通常のヒートマップを出力しますが、seaborn.clustermap は、クラスタ分析を行い、デンドログラムとともにヒートマップを出力します。 heatmap: ヒートマップの可視化 seaborn.heatmap メソッドは、色の濃淡や色相でデータの密度や値の分布を可視化します。 seaborn.heatmap の使い方 seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None,
seaborn.heatmap# seaborn.heatmap(data, *, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None, **kwargs)# Plot rectangular data as a color-encoded matrix. This is an Axes-level function and will draw the hea
import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) dt = 0.0005 t = np.arange(0.0, 20.5, dt) s1 = np.sin(2 * np.pi * 100 * t) s2 = 2 * np.sin(2 * np.pi * 400 * t) # create a transient "chirp" s2[t <= 10] = s2[12 <= t] = 0 # add some noise into the mix nse = 0.01 * np.random.random(size=len(t)) x = s1 + s2 + nse # the signal NFFT = 1
matplotlib.pyplot# matplotlib.pyplot is a state-based interface to matplotlib. It provides an implicit, MATLAB-like, way of plotting. It also opens figures on your screen, and acts as the figure GUI manager. pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation: import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 5, 0.1) y = np.sin(x) plt.
matplotlibを使ってプロットする時、プロットするたびに関数を調べることが多く、効率が悪いので、よく使うものについて情報まとめておく。 matplotlib, pyplot, pylabの関係性 まず、「各々の言葉が何を指すのか」から。 Matplotlib: データビジュアライゼーションパッケージの全体を指す。 pyplot: matplotlibパッケージ内のモジュールを指す。欲しいプロットを作るために暗黙的かつ自動的に図形や軸を作成するインターフェース。基本的にはこのモジュール越しにmatplotlibの機能を活用する。以下のようにインポートして置くのが一般的。 pylab: pyplotとnumpyモジュールを一括インポートするものであるが、現在では特にJupyter notebookやipythonカーネルを使っている場合に奨励されないので、注意すること。 グラフの構成要素
You are reading an old version of the documentation (v2.0.2). For the latest version see https://matplotlib.org/stable/
matplotlib.pyplot.specgram# matplotlib.pyplot.specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs)[source]# Plot a spectrogram. Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the spectrum
TensorFlow.js is a library for building and executing machine learning algorithms in JavaScript. TensorFlow.js models run in a web browser and in the Node.js environment. The library is part of the TensorFlow ecosystem, providing a set of APIs that are compatible with those in Python, allowing models to be ported between the Python and JavaScript ecosystems. TensorFlow.js has empowered a new set o
でぃーぷらーにんぐのフレームワークを使う特訓用の問題集でもあって、チートシートでもあるものをつくってみました https://github.com/yoyoyo-yo/DeepLearningMugenKnock ディープラーニングの論文とかを理解するための特訓集です。自分の手で実装することを目標にしてます。 あくまで趣味ベースで作ったものなので、プルリクエストは受け付けてますが依頼などは一切受け付けません そこをご理解頂けた方のみご利用下さい ★追記 2019.11.7 Study-AI株式会社様 http://kentei.ai/ のAI実装検定のシラバスに使用していただくことになりました!(画像処理100本ノックも) Study-AI株式会社様ではAIスキルを学ぶためのコンテンツを作成されており、AIを学ぶ上でとても参考になります! 検定も実施されてるので、興味ある方はぜひ受けること
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く