米Google社傘下で、囲碁を打つ人工知能「AlphaGo」を開発した英Google DeepMind社と米Stanford Universityの研究者は、人間などの脳の解剖学的知見を基にした学習と記憶のモデルを共同で提案したと、学術誌「Cell」などを出版する米Cell Press社が発表した。論文もCell誌の「Trends in Cognitive Science」で無料公開された。AlphaGoのような特定用途の人工知能を、人間に近い汎用人工知能(Artificial General Intelligence:AGI)に近づける試みの1つといえる。 論文の著者は3人。筆頭著者は、DeepMind社のDharshan Kumaran氏。同氏は英University of College London、Institute of Cognitive Neuroscienceの研究者でも
Learning to Transduce with Unbounded Memory Posted by iamtrask on February 25, 2016 Summary: I learn best with toy code that I can play with. This tutorial teaches DeepMind's Neural Stack machine via a very simple toy example, a short python implementation. I will also explain my thought process along the way for reading and implementing research papers from scratch, which I hope you will find use
A cutting-edge corner of science is being wooed by Silicon Valley, to the dismay of some academics. How much are a dozen deep-learning researchers worth? Apparently, more than $400 million. In the ‘Plex: Google is spending hundreds of millions to build software that can learn from the information stored in its data centers. This week, Google reportedly paid that much to acquire DeepMind Technologi
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く