Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
このポストは Inside of Deep Learning あるいは深層学習は何を変えるのか から分割したものです。全体があまりに長くなってしまったので、改善手法についても別のページにしました。 DL(ディープラーニング)の性能を改善していくポイントを駆け足で見て行きましょう。 学習データの追加、改善 DLシステムの性能を上げるためにはためにはより沢山の学習データが必要と言われています。例えば下記の図は、顔のパーツやバスの認識について学習データを増やすほど性能が上がるとした論文のものです。 Do We Need More Training Data? 画像であれば左右、上下、および上下左右に反転させた画像を使ってどちらを向いていても正しく特徴を取れるようにしたり、あるいは少し拡大したりノイズを混ぜるなどしてデータを水増しする手法がよく使われます。ユニークなのは例えばCGを用いて画像を作成
結論から ChainerやTensorFlowなどの機械学習(特にDeepLearning)フレームワークでGPUを使うと、誤差程度ではあるものの演算結果が毎回変わってしまいます。(非決定的な演算) 「乱数使ってるから当たり前でしょ」って話ではなく、乱数種を指定してもGPU内部での演算順序が非決定的であるためGPU演算の結果は安定しません。 浮動小数点演算なので誤差が出るのは当然だが、その誤差が安定しない(非決定的)なのが気になるところです。 Chainerでは環境変数(CHAINER_CUDNN)の指定またはConvolution2Dなどへのパラメータ追加で本事象を回避可能。 TensorFlowについてはGoogle社曰く「EigenライブラリまたはcuDNNの仕様によるとのこと」であり現状では対応策無し。(詳細は次の記事に記載のIssuesを参照のこと) 尚、Caffeでも同様の事象
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 何を書くのか AI技術の中でも非常に重要な「機械学習」の基本を勉強するときの考え方、オススメの教材、情報などのメモとして、自分のここ半年の経験をざっくりまとめました。 これから機械学習の勉強を始めます、という方の参考に少しでもなれば嬉しいです。 機械学習の基本を勉強する際の考え方 機械学習の勉強を始める理由は、人によって様々だと思います。 世間はAIで大変騒がくなって参りましたので、経営層から突然AIのことを調べろと言われた可哀想な事務系の担当者もいるでしょう。 既にやりたいこと、作りたいアプリケーションが決まっていて、そのために機械学
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習を学ぶのに最も適した教材と言われる、Machine Learning | Coursera を受講しているので、復習も兼ね学んだ内容を簡潔にまとめてみようと思います。 最終回、第十一弾は、**写真OCR (Photo Optical Character Recognition)**です。 機械学習の応用例としてのコンピュータービジョン (Computer Vision)ですが、**人工データ合成 (Artificial Data Synthesis)、天井分析 (Ceiling Analysis)**といった、実際に機械学習を用
通常は出力値を予測するだけですが、トレーニング中はこの予測結果をフィードバックします。入力データに対しての正解データ(教師データ)を用意してやり、損失関数という式を使って予測値が正解ととれだけ離れているかを計算します。 これを元に、現在のモデルをどのように修正すれば正解に近づく可能性が高いを計算します。これがオプティマイザです。損失値の勾配とオプティマイザによってネットワークがより強化され、この一連の流れがバックプロパゲーションです。 ネットワークはもともとはランダムの初期値を持っています。これが一度のバックプロパゲーションにより強化され、少しづつフォワードプロパゲーション、バックプロパゲーションを繰り返していく事でシステム内の初期値(パラメータ)が学習していきます。 モデル、伝達関数 モデル内の実際の計算を見てみましょう。簡便のため一つのレイヤーの局所的な計算を図解します。 x1からx4
概要 機械学習でTensorFlowを使っていみたいなと思い、調べたらDockerを使うと良いとの事だったのでDockerでTensorFlowを使ってみました。実際にやってみるとJupyter Notebookを使うことになったのでそちらに関しても書いておこうと思います 用語の説明 Docker 簡単に仮想環境を作り、動作させられるオープンソース。Paasのようなもの。 [注目を浴びる「Dockerコンテナ」、従来の仮想化と何が違うのか?](http://cn.teldevice.co.jp/column/detail/id/102) TensorFlow TensorFlow(テンソルフロー)とは、Googleの機械学習/ディープラーニング/多層ニューラルネットワークライブラリ。基本的にPythonで書く。 [TensorFlowとは](http://www.ossnews.jp/os
def build_embedding_graph(self): self.x = tf.placeholder(tf.float32, shape=[None, None, None, self.channels], name="X") self.y = tf.placeholder(tf.float32, shape=[None, None, None, self.channels], name="Y") # H-1 conv self.Wm1_conv = util.weight([self.cnn_size, self.cnn_size, self.channels, self.feature_num], stddev=self.weight_dev, name="W-1_conv", initializer=self.initializer) self.Bm1_conv = ut
シリコンバレーのエンジニアが一年ほどをDL(Deep Learning)を追いかけてみて思ったこと、感じたことをまとめてみました。とにかく伝えたいことは、DLはもはやその一言では片付けられないほどに構造やアプローチが多様化しているということ。そしてその進化スピードがえげつないほど速いということです。 将来のプログラミングや問題解決の仕方を変え、人を取り巻く環境を変えていくかもしれないというじりじりとした圧迫感。これを少しでも伝えられればと思っています。 このポストの方針 技術部分の説明は初心者向け。各構成要素など基礎から解説します。今からDLをキャッチアップしていく人には多分丁度良いです。 最初と最後だけ読むのも良いですが、各部の技術的な部分や難しさはできるだけ短く分かりやすく書くつもりですしここが一番大事なところです。できれば時間のあるときにじっくり読んでもらえればと思います。 内容 _
タイトルは論文っぽく書いていますが、要はTensorFlowのページにAndroid / iOS で動かせるぜーとあったのでどんなものかやってみた、という話です。 やってみると、確かにAndroid、iOS両方でビルドすることができたので、その手順などを書きたいと思います。 Android まずはAndroid版から。 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android 基本的にはこちらに従います。ビルドできると、GoogleのInceptionモデルを使ったTF Classify, Scalable Object Detection using Deep Neural Networks をベースにしたTF Detectが作られます。 さらににスタイル変換するTF Stylizeま
Raspberry Pi4 追加 7/7/2019 TensorFlow1.5 最適化済みバイナリ効果検証, Mac Pro追加 2/6/2018 GeForce GTX1080 Ti の検証 10/3/2017 MacBook Pro Core i7 の検証 10/1/2017 Amazon EC2 / Microsoft Azure 環境の検証 9/17/2017 TensorFlow 1.0/XLA での導入効果 仮検証 2/24/2017 CPU / GPU 性能やOSによる違い検証 1/19/2017 Windows環境下 (正式版 / docker / bash on Ubuntu) での違い検証 1/19/2017 TensorFlowのmnistでの CPU / GPU 計算速度について自分の実測値を載せておきます。5000回のトレーニングにかかった時間です。3回の計測値の
ジャポルノレディーズであいまい検索が最も役だったのが名寄せでした。 ジャポルノレディーズでは基本的に動画は全て他のエロサイトへのリンクで提供しているので明日花キララさんの動画を探す上で他のエロサイトから明日花キララさんの動画を探す作業が必須です。 しかし問題は ・エロサイト毎に明日花キララさんのアルファベット表記がバラバラ という事でした。 エロサイトAではasuka_kirara エロサイトBではasuka_kilala エロサイトCではashitaka_kirara ・ ・ ・ という感じ。うちではasuka_kiraraでデータを持っているので、当然asuka_kilalaと名前のついている動画もasuka_kiraraの動画としてデータを保存したい!という訳です。 そこであいまい検索が役立ちます。 まずは普通のmatchクエリでasuka_kilalaを検索します。 # codin
( 調査中 ) INSとは? Wikipedia 「慣性航法装置」 慣性航法装置(かんせいこうほうそうち、英: Inertial Navigation System, INS)は、潜水艦、航空機やミサイルなどに搭載される装置で、外部から電波による支援を得ることなく、搭載するセンサ(慣性計測装置、英: Inertial Measurement Unit, IMU、Inertial Navigation Unit; INU, Inertial Guidance Unit; IGU, Inertial Reference Unit; IRUなども使用される)のみによって自らの位置や速度を算出する。 慣性誘導装置(英: Inertial Guidance System, IGS)、慣性基準装置(英: Inertial Reference System, IRS)などとも呼ばれる。 INS実現技術に
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 去年参加したNIPS Adversarial Training Workshopについて書きます。 Advent Calendarに投稿するはずだったのですが忘れていました...すみません。 動画が全て上がっているので詳しく知りたい人はそれを見るといいと思います。 https://www.facebook.com/groups/675606912596390/ あとHuszarのBlogとかにももっといいまとめが上がっているのでそれもおすすめです。またGANは曖昧な部分が多かったり理解が甘くて、とんちんかんなことを書いていたりかもしれま
田中TOMという名前で底辺Youtuberやってます。 機械学習について勉強して学んだことを動画でまとめていきます。 Random Forestで分類問題 Random Forest で分類問題 part1 決定木モデル 理論編 Random Forest で分類問題 part2 決定木モデル 実装編 Random Forest で分類問題 part3 Random Forest 理論編 Random Forest で分類問題 part4 Random Forest 実装編 Kerasで時系列データ予測 簡単にNN(ニューラルネットワーク)が構築できる Keras で時系列データの機械学習を行う。 Kerasで時系列データ予測 part1 環境構築 Kerasで時系列データ予測 part2 Keras Kerasで時系列データ予測 part3 再帰型ニューラルネットワーク Kerasで時系
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く