Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

>>> import numpy >>> numpy.show_config() lapack_opt_info: extra_link_args = ['-Wl,-framework', '-Wl,Accelerate'] extra_compile_args = ['-msse3'] define_macros = [('NO_ATLAS_INFO', 3)] blas_opt_info: extra_link_args = ['-Wl,-framework', '-Wl,Accelerate'] extra_compile_args = ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Headers'] define_macros = [('NO_ATLAS_INFO', 3)] にて確認する. 調べた結果,upda
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? # !/usr/bin/env python # -*- coding: utf-8 -*- # インポート import numpy as np import scipy as py import pandas as pd import itertools as it ''' 作成 ''' # リスト作成 list_value = [10,11,12] list_value Out[374]: [10, 11, 12] # タプル作成 tuple_value = (10,11,12) tuple_value Out[375]: (10
Windows環境にPython 3.5.1+numpy+scipy+αをインストールした際のまとめ (Pythonはじめて1週間程度の人間が書いています) OS Windows 10 Pro (64 bit) インストールしたPythonのバージョン Python 3.5.1 (32 bit) pipでインストールしたPythonのライブラリ wheel (0.29.0) numpy (1.10.4) scipy (0.17.0) pandas (0.17.1) matplotlib (1.5.1) scikit-learn (0.17) Python 3.5.1のインストール https://www.python.org/ にアクセス [Downloads/Windows/Python 3.5.1]を選択し[python-3.5.1.exe]をダウンロード [python-3.5.1.
対象 Python及びNumPy初心者に向けて書いています. 「C言語は使えるけど最近Pythonを始めた」とか「Pythonらしい書き方がよくわからない」に該当する物理系の数値計算を目的とした方には特に有用かもしれません. また, 自分の不勉強のために間違った記述があるかもしれません. ご容赦ください. あらまし 内容はNumPyを用いた数値計算の高速化 : 基礎のつづきです. ndarrayのユニバーサル関数や演算を用いて可能な限りforループを使わずに基礎的な数値計算を実装していきます. 今回からSciPyも仲間に加わります. 以下ではNumPy・SciPyの関数の詳しい実装についてはあまりコメントしていないので, わからないことがあったら是非リファレンスを読んでみてください. 言わずもがな, 車輪の再発明をしないことがとっても大事です. 微分 物理の基礎方程式には微分がつきものです
対象 Python及びNumPy初心者に向けて書いています. 「C言語は使えるけど最近Pythonを始めた」とか「Pythonらしい書き方がよくわからない」に該当する物理系の数値計算を目的とした方には特に有用かもしれません. また, 自分の不勉強のために間違った記述があるかもしれません. ご容赦ください. あらまし NumPyを用いた数値計算の高速化 : 基礎 NumPy・SciPyを用いた数値計算の高速化 : 応用その1 の続きになります. 基礎的な数値計算の手法を追っていきますが, 今回は少し発展的な内容も含みます. 代数方程式 / 超越方程式 代数方程式はいわゆる手で解けるふつうの方程式です. 超越方程式は随分大仰な名前ですが, 代数的な手法で解けない方程式のことを指します. 具体的には $$ \sin(x) = \frac{x}{2} $$ こんな子です. この方程式は, 「$\s
あらまし 以前の記事でNumPy・SciPyの高速化にまつわる事柄を書きました: NumPyを用いた数値計算の高速化 : 基礎 NumPy・SciPyを用いた数値計算の高速化 : 応用その1 NumPy・SciPyを用いた数値計算の高速化 : 応用その2 ホントに早くなってるの?ちゃんと調べてみましょう. 調査方法 Pythonによるオレオレ実装と比較します. 速度よりシンプルさを重視した実装との比較なので正当な評価とは言い難いかもしれません. Pythonはanaconda3, 時間計測にはIPythonの%timeitを使用します. --実行環境-- OS : Ubuntu16.04 LTS 64bit Python : anaconda3-4.1.1 CPU : Intel Corei5 3550 (4-core / 4-thread) リストの初期化 たとえば行列の初期化です.
Pythonで機械学習を組み込んだアプリケーションを作成すると、大体scikit-learn、それでなくてもNumpyやScipyに依存することが多いです。 これらは様々なライブラリに依存しているため、Heroku上にデプロイするには一筋縄ではいきません。AWSなどで自前のサーバーがたてられる場合はそちらに立てれば良いですが、お金もかかるしHerokuでやりたい!という場合もあると思うのでそのための手法を紹介します。 Docker Container HerokuでもDocker Containerを利用したデプロイが可能になったため、buildpackをいそいそと編集するよりもこちらを利用するほうが便利です。以下に公式のサンプルがあるため、こちらをご参考にしていただければと。 heroku-examples/python-miniconda これでもうapt-getでいろいろインストール
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く