エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
NumPy・SciPyを用いた数値計算の高速化 : 応用その1 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
NumPy・SciPyを用いた数値計算の高速化 : 応用その1 - Qiita
対象 Python及びNumPy初心者に向けて書いています. 「C言語は使えるけど最近Pythonを始めた」とか「Pyth... 対象 Python及びNumPy初心者に向けて書いています. 「C言語は使えるけど最近Pythonを始めた」とか「Pythonらしい書き方がよくわからない」に該当する物理系の数値計算を目的とした方には特に有用かもしれません. また, 自分の不勉強のために間違った記述があるかもしれません. ご容赦ください. あらまし 内容はNumPyを用いた数値計算の高速化 : 基礎のつづきです. ndarrayのユニバーサル関数や演算を用いて可能な限りforループを使わずに基礎的な数値計算を実装していきます. 今回からSciPyも仲間に加わります. 以下ではNumPy・SciPyの関数の詳しい実装についてはあまりコメントしていないので, わからないことがあったら是非リファレンスを読んでみてください. 言わずもがな, 車輪の再発明をしないことがとっても大事です. 微分 物理の基礎方程式には微分がつきものです