
We introduce a new deep convolutional neural network, CrescendoNet, by stacking simple building blocks without residual connections. Each Crescendo block contains independent convolution paths with increased depths. The numbers of convolution layers and parameters are only increased linearly in Crescendo blocks. In experiments, CrescendoNet with only 15 layers outperforms almost all networks witho
By Emil Wallner Earlier this year, Amir Avni used neural networks to troll the subreddit/r/Colorization — a community where people colorize historical black and white images manually using Photoshop. They were astonished with Amir’s deep learning bot. What could take up to a month of manual labour could now be done in just a few seconds. I was fascinated by Amir’s neural network, so I reproduced i
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ※2018年06月23日追記 PyTorchを使用した最新版の内容を次の書籍にまとめました。 つくりながら学ぶ! 深層強化学習 ~PyTorchによる実践プログラミング~ 18年6月28日発売 これから強化学習を勉強したい人に向けて、「どんなアルゴリズムがあるのか」、「どの順番で勉強すれば良いのか」を示した強化学習アルゴリズムの「学習マップ」を作成しました。 さらに、各手法を実際にどう実装すれば良いのかを、簡単な例題を対象に実装しました。 本記事では、ひとつずつ解説します。 オレンジ枠の手法は、実装例を紹介します。 ※今回マップを作るに
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear
Detection of double JPEG compression is important to forensics analysis. A few methods were proposed based on convolutional neural networks (CNNs). These methods only accept inputs from pre-processed data, such as histogram features and/or decompressed images. In this paper, we present a CNN solution by using raw DCT (discrete cosine transformation) coefficients from JPEG images as input. Consider
The new AMIs are pre-installed and configured with CUDA 9 for both Ubuntu and Amazon Linux, along with the other GPU drivers to take advantage of the speed of Volta on P3, including cuDNN 7.0, NCCL 2.0.5 and the NVIDIA Driver 384.81. In addition to the latest drivers, the AMI also includes popular frameworks which have been optimized for P3 and Volta including Apache MXNet v0.12 RC1, Caffe2 v0.8.1
Word embeddings in 2017: Trends and future directions Word embeddings are an integral part of current NLP models, but approaches that supersede the original word2vec have not been proposed. This post focuses on the deficiencies of word embeddings and how recent approaches have tried to resolve them. This post discusses the deficiencies of word embeddings and how recent approaches have tried to res
This summer, Preferred Networks accepted a record number of interns in Tokyo from all over the world. They tackled challenging tasks around artificial intelligence together with PFN mentors. We appreciate their passion, focus, and designation to the internship. In this post, we would like to share some of their great jobs (more to come). Learning to flip objects using guided policy search Takeshi
Hey Siri: An On-device DNN-powered Voice Trigger for Apple’s Personal Assistant The "Hey Siri" feature allows users to invoke Siri hands-free. A very small speech recognizer runs all the time and listens for just those two words. When it detects "Hey Siri", the rest of Siri parses the following speech as a command or query. The "Hey Siri" detector uses a Deep Neural Network (DNN) to convert the ac
In Lecture 15, guest lecturer Song Han discusses algorithms and specialized hardware that can be used to accelerate training and inference of deep learning workloads. We discuss pruning, weight sharing, quantization, and other techniques for accelerating inference, as well as parallelization, mixed precision, and other techniques for accelerating training. We discuss specialized hardware for deep
Research AlphaGo Zero: Starting from scratch Published 18 October 2017 Authors David Silver, Demis Hassabis Artificial intelligence research has made rapid progress in a wide variety of domains from speech recognition and image classification to genomics and drug discovery. In many cases, these are specialist systems that leverage enormous amounts of human expertise and data. However, for some pro
あらすじ ニューラルネットワークを作成する際に、層の数、ニューロンの数、活性化関数の種類等考えるべきパラメータは非常に多くあります。 そこで、これらのパラメータがどのようにモデルや学習に影響を与えるかということをscikit-learnの MLPClassifier を使って解説したいと思います。 MLPClassifierを使うと、非常に簡単にニューラルネットワークを使うことができます。 今回はそれぞれのパラメータの意味と使い方及び各種メソッドの解説していきたいと思います。 ちなみに、scikit-learnの推定器の選び方に関しては、scikit-learn(機械学習)の推定器:Estimatorの選び方 をご参照下さい。 1. hidden_layer_sizes| 層の数と、ニューロンの数を指定 default : (100,) 隠れ層の層の数と、ニューロンの数をタプルで指定します
In order for robots to perform mission-critical tasks, it is essential that they are able to quickly adapt to changes in their environment as well as to injuries and or other bodily changes. Deep reinforcement learning has been shown to be successful in training robot control policies for operation in complex environments. However, existing methods typically employ only a single policy. This can l
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く