タグ

programmingとrandomに関するnakackのブックマーク (2)

  • いつからその方法で偏りのない乱数が得られると錯覚していた? - アスペ日記

    私はつい最近まで勘違いしていました。 ここのページに書いてあるような方法で、一様分布する整数が得られると。 int random(int n) { return (int)(( rand() / (RAND_MAX + 1.0) ) * n); } この方法、一見すると実に一様分布が得られそうに見えるんですよね。 どういう思考回路を通っているかというのを自己分析すると、次のような感じです。 1. rand() では 0〜RAND_MAX のランダムな整数が得られる。 2. それを RAND_MAX + 1 で割ると、[0, 1) に一様分布する実数が得られる。 3. [0, 1) の一様な実数を n 倍して小数点以下を切り捨てたら、0 から n-1 に一様分布する整数が得られる。 これの罠なところは、1 と(特に)3 が正しいというところだと思います。 ただ、2 がダウト。 思いっきりダウ

    いつからその方法で偏りのない乱数が得られると錯覚していた? - アスペ日記
  • 良い乱数・悪い乱数

    C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは

  • 1