イェンセンの不等式(いぇんせんのふとうしき、英語: Jensen's inequality)は、凸関数を使った不等式である。 f(x) を実数上の凸関数とする。 離散の場合: を、 を満たす正の実数の列とする。また、 を、実数の列とする。そのとき、次が成り立つ。 連続値の場合: を、 を満たす実数上の可積分関数とする。また、 を実数上の可積分関数とする。そのとき、次が成り立つ。 ルベーグ積分論の観点では、 離散の場合も連続の場合も同一に見倣せる。 証明は、f のにおける接線を g とおいて、常に g(x) が f(x) よりも小さいことを使えばよい。 統計学において、式の下限を評価する際に、一定の役割を担っている。例えば、カルバック・ライブラー・ダイバージェンスが常に 0 より大きいことを証明するときに用いられる。p(x) が確率密度関数の場合を考えると、イェンセンの不等式は次のように書け