タグ

ブックマーク / tech.preferred.jp (15)

  • TOP500とGreen500:コンピュータの性能指標をどう読むか - Preferred Networks Research & Development

    1. はじめに 2020年6月22日深夜(日時間)にリモート開催されたISC2020のTOP500セッションで、PFNが作った深層学習用スーパーコンピュータ、MN-3が21.11 GFlops/WのHPLベンチマークの実行性能をあげ、Green500ランキングで500システム中No.1になりました(写真1)。開発チームの一員として、ここに至るまでの苦労の連続を思うと、とても嬉しいです。 なお、同日発表されたTOP500, HPCG, Graph500, HPL-AIベンチマークでは、理研に設置された「富岳」システムが各々500システム中1位、68システム中1位、10システム中1位、2システム中1位と、1位を多数達成したことも、ポスト京プロジェクト(富岳と命名される前の名前)の前座プロジェクトや、システム評価にかかわったものとして嬉しく思います。 このBlogでは最近増えてきてちょっと混乱

    TOP500とGreen500:コンピュータの性能指標をどう読むか - Preferred Networks Research & Development
  • Chainerモデルのさらなる高速化、デプロイの簡便化、可搬性の向上に向けた実験的な取り組みについて - Preferred Networks Research & Development

    PFN のエンジニアの浜地です。入社以来取り組んできた実験的なプロジェクト Chainer-compiler を github で公開しました。まだ実運用に投入していける段階では無いですが、面白いものになってきているのではないかと思うので、紹介させてもらいたいと思います。 https://github.com/pfnet-research/chainer-compiler 昨年末、 PFN は ChainerX をベータリリースしました。 ChainerX は Chainer の使いやすさを維持しつつ、 Python で実装されていた部分を C++ 実装で置き換え、以下の3つを実現するものでした。 モデルの実行を高速化する Python の無い環境でもデプロイ可能にする CPU/GPU以外への移植を容易にする Chainer-compiler プロジェクトは ChainerX を利用して、

    Chainerモデルのさらなる高速化、デプロイの簡便化、可搬性の向上に向けた実験的な取り組みについて - Preferred Networks Research & Development
  • Preferred Networks における研究活動 - Preferred Networks Research & Development

    こんにちは、新しく執行役員兼 Chief Research Strategist に就任した秋葉です。就任の挨拶を兼ねて、PFN における研究活動に関する考えを共有したいと思います。 PFN における研究とは何か? 何が研究であり何が研究でないかという境界を引くのは非常に難しく、またそれを積極的に行う意味もありません。研究とは「研ぎ澄まし究めること」を語義とし、一般に、物事について深く調査・考察を行い事実を解明したり発明を行ったりすることを指します。 PFN では挑戦的であり不確実性の高いプロジェクトが大部分を占めており、ほぼ全てのプロジェクトが少なからず研究的側面を伴います。深層学習関連のコア技術の研究開発は勿論、その応用に関してもデータやタスクに応じた適切な手法の選択や非自明な工夫がなければ上手くいかないことが殆どです。また、ロボティクス、コンピュータビジョン、自然言語処理等のような多

    Preferred Networks における研究活動 - Preferred Networks Research & Development
  • 巨人たちが語るディープラーニングの未来(翻訳記事) - Preferred Networks Research & Development

    比戸です。スムージーの美味しい季節ですね。 今回は「ディープラーニングの未来」というパネルディスカッションに関するブログの翻訳をお送りします。この業界の有名人が多数参加していて、とても興味深い内容だったため、日のコミュニティでも共有できたらと思ったのです。 それは2015年7月に開かれた機械学習の国際会議・ICML内のDeep Learning Workshopの企画でした。元記事はワークショップ主催者のKyunghyun Cho氏のBrief Summary of the Panel Discussion at DL Workshop @ICML 2015です。ご人の許可を得られたので、以下に日語訳を掲載します。なるべく原文に忠実に訳したつもりですが、分かりづらい部分は意訳が入っているため、もし誤りがあればご指摘下さい。 — ここから翻訳 <はじめに> ICML 2015で開かれた

    巨人たちが語るディープラーニングの未来(翻訳記事) - Preferred Networks Research & Development
  • 今年のSIGKDDベストペーパーを実装・公開してみました - Preferred Networks Research & Development

    毎日暑いですね。比戸です。 ちょうど今週シカゴで開かれていたSIGKDD2013でBest research paperに選ばれたEdo Liberty氏 (Yahoo! Haifa Labs)の”Simple and Deterministic Matrix Sketching”のアルゴリズムを実装して公開してみました。 元論文PDFは著者サイトから、私が書いたPythonコードはGithubからそれぞれ入手できます。 SIGKDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)はACM主催で行われる、知識発見&データマイニングにおけるトップ会議です。最近は機械学習との境目が曖昧になってきましたが、査読時には理論的な新しさだけでなく、実データ(特に大規模データ)を使った実験での評価が必要とされるのが特徴です。

  • データ解析作業の救世主! 超絶☆実験ビルドシステムmafをOSS公開しました - Preferred Networks Research & Development

    Photo by midiman under Creative Commons License (original) メリークリスマフ! 得居です。今日はクリスマスですね。皆様昨日はいかがお過ごしでしたでしょうか? クリスマスということで、今日は私たちから皆様に、特にデータ解析や論文執筆、手法の比較検証のために計算機上で様々な実験をしている方々に、プレゼントがあります! Github – pfi/maf 今日、実験結果を「ビルドする」ためのツールmafを公開しました! mafは、PFIでもよく使われているPythonベースのビルドツールwafを実験に使うための拡張です。大まかな使い方を学ぶために、ドキュメントとサンプルも公開しています。 maf — maf 0.1 documentation サンプル 実験手順をビルドだと思って宣言的に書くこと自体はwaf等既存のビルドツールで可能です。m

    データ解析作業の救世主! 超絶☆実験ビルドシステムmafをOSS公開しました - Preferred Networks Research & Development
  • エラー処理を書いてはいけない - Preferred Networks Research & Development

    昨日セミナーとして USTREAM させていただいた資料を公開いたします。 エラー処理を書いてはいけない USTREAMのビデオ タイトルは釣り気味ですが、内容はいたって真面目なのでご安心ください。 概要 やってはいけないシリーズ、の第三弾としての試みです。 リソース管理をしてはいけない ロック処理を書いてはいけない エラー処理を書いてはいけない ← New! タイトルに反して(あるいはタイトル通りに)、正しく長時間動作するプログラムを書くには きちんとエラー処理を行う必要がありますが、 それを何とか抽象化しようという(Haskell界隈での)試みについてのご紹介でございます。 あまり他の人がこういうことを言っているのを聞いたことが無いので、 自分の日々考えていることを世に問うた形になっております。 実際のところ、社内ではC++がメインに使われておりますので、 こういう手法が用いられている

    エラー処理を書いてはいけない - Preferred Networks Research & Development
  • モダン並列・並行プログラミング ~ Concurrent Revisions による実装と現実 ~ - Preferred Networks Research & Development

    日社内向けのTechTalkにて、並列・並行プログラミングに関する話を行いました。 昨今、プログラムの並列化はなくてはならないものとなっています。しかし、そのプログラミング環境は依然としてロックを用いたものが主流です。今回の発表の主張を端的に申し上げますと、 “Locks must go!” ということになります。並列プログラミングに銀の弾丸はありません。しかし、ロックは別の何らかの安全性を確保したプログラミングモデルで置き換えられなければいけません。そうでなければ、再現しにくいバグに苦しめられ、終電を逃す日々と決別することはできないでしょう。また、ロックによるプログラミングの抱える質的問題にも言及しています。 この界隈の最新の動向として、去年OOPSLA’10にて発表されたConcurrent Revisionsについての解説も行なっております。また、弊社研究開発において、先日Con

    モダン並列・並行プログラミング ~ Concurrent Revisions による実装と現実 ~ - Preferred Networks Research & Development
  • Simon Peyton Jones先生招待講演について - Preferred Networks Research & Development

    村主です。 2011年9月21日に、ICFP2011で来日していたSimon Peyton-Jones先生を弊社にお招きして、Glasgow Haskell Compilerの最新事情について講演をしていただきました。当日は体が浮きそうなほどの風が吹く大嵐でしたが、多くの人の協力のおかげで無事に終えることができ、感謝しています。 サイモン先生からスライドを分けてもらったので、講演会の動画とあわせて読む形で、記事にまとめてみました。Haskell/GHCのさまざまなトピックをカバーするこの講演、みなさんのHaskell勉強の一助となれば幸いです。 サイモン先生に「君たちも何か話してよ」と頼まれたので、僕が流体計算言語Paraiso(リンク先にスライドあり)の話をまずしています。 31:46 頃からサイモン先生のトークが始まります。まずはHaskell Communities and Acti

    Simon Peyton Jones先生招待講演について - Preferred Networks Research & Development
  • 最近傍探索2011 - Preferred Networks Research & Development

    こんにちは、二台目のmbaを買うのをためらっている岡野原です。 アイテム集合に対し、与えられたアイテムと似ているアイテムを求める、という近傍探索問題は古典的な問題でありながら、現在でも多くの改善がされています。特に言語情報、画像情報、行動履歴情報、生物情報、購買情報などありとあらゆるデータが高次元中の点として表現されるようになってきており、こうしたデータの最近傍探索は広い分野で応用範囲がある技術になっています。 アイテムが低次元(例えば2, 3次元)の場合はkd木や最近だとwavelet木を使う方法がありますが、今回扱うケースは各アイテムが高次元(数百万次元)中の点であったり、アイテム間の距離のみが定義されている場合(カーネル関数など)です。アイテム数は数万から数億ぐらいを想定しています。 最近傍探索問題はいくつかありますが、例えばk近傍グラフ構築問題では、 「アイテム集合X = x1,

    最近傍探索2011 - Preferred Networks Research & Development
  • 乱択アルゴリズム紹介(Color-Coding) - Preferred Networks Research & Development

    吉田です。今まで数解に渡って乱択アルゴリズムを紹介してきました。そろそろ解析やアイデアがシンプルかつ結果が綺麗な乱択アルゴリズムは尽きてきたかと思っていましたが、もう一つとても素敵な手法が有るのを思い出しましたので解説します。Color Codingと呼ばれる手法です。 \(G = (V, E)\)をグラフ、\(s,t\in V\)を\(G\)中の二頂点、\(k\geq 0\)を整数とします。\((s,v,k)\)パスとは、\(s\)と\(t\)を結ぶパスで内点の個数が丁度\(k\)個のものを指します。但しパスは同じ頂点や枝を二度使ってはいけません。例えば以下の図で赤い線で示されているパスは\((s,t,5)\)パスです。

    乱択アルゴリズム紹介(Color-Coding) - Preferred Networks Research & Development
  • ソフトな推論Markov Logic Networkの紹介 - Preferred Networks Research & Development

    予約したもののインフォバーを手に入れられない海野です. 人間の高度な知的処理の一つが、推論処理です.今日はその推論を、述語論理と機械学習の組み合わせで模倣したMarkov Logic Networkという手法と、そのOSS実装であるAlchemyの紹介です. 鳥とはなんですか?という質問に対してどう答えるでしょうか.大雑把には、以下のように考えるでしょう. 鳥とは、空を飛ぶ動物です. この回答に対して、「ペンギンは飛ばないよ」と反論する人がいるかも知れません. 鳥とは、くちばしを持った動物です. すると、「カモノハシは鳥じゃないよ」と言われるでしょう.人間は初めて見た生き物が鳥かそうじゃないか判断するとき、どうしているのでしょうか.思うに、少数の規則(飛ぶかどうか.くちばしをもつか)から総合的に判断しているように思われます.人間の推論というのは概ね以下のような特徴を持っているのではないかと

    ソフトな推論Markov Logic Networkの紹介 - Preferred Networks Research & Development
  • dag_vector: ランダムアクセス可能な圧縮配列 - Preferred Networks Research & Development

    こんにちは、この夏はシルキードライで乗り切りたい岡野原です。 今日は最近公開したC++のオープンソースであるdag vectorについて紹介します。 github: dag_vector ライセンスは修正BSDライセンスです。 dag vector (direct accessible gamma code vector) は値を圧縮して格納したまま任意の場所の値を高速に参照可能な配列ライブラリです。しかもデータ末尾への追記が可能です。 dag vectorはstd::vectorのように利用できます。下にいくつか例を見ていきましょう。 dag_vectorの例 #include "dag_vector.hpp" // dag_vectorは0以上の正整数の配列を扱う配列。 dag_vector dv; // 値はいつでも追加可能。追加された値は圧縮して格納される // 正整数xは2lg(

    dag_vector: ランダムアクセス可能な圧縮配列 - Preferred Networks Research & Development
  • FCRC 2011参加報告 - Preferred Networks Research & Development

    先日、アメリカのサンノゼで開催されたFCRC (Federated Computing Research Conference)に参加してきましたので、その様子について報告したいと思います。 写真は最終日に遊びに行ったスタンフォード大学の門です。奥に見える(見えない?)建物まで歩かないとキャンパスに辿り着きません。アメリカの広さを感じます。 FCRCはACM(アメリカの計算機科学に関する学会)によって4年に一度開催されるイベントで、そこでは15個程度の会議が同時開催されます。会議のジャンルは多種多様で、理論計算機科学(CCC/STOC/EC)、並列/分散アルゴリズム(PODC/SPAA),プログラミング言語(PLDI)、ハイパフォーマンスコンピューティング(HPDC)などなど何でも有りです。これらの会議が並列に一週間以上に渡って開催されました。

    FCRC 2011参加報告 - Preferred Networks Research & Development
  • 関数型的正規表現マッチ - Preferred Networks Research & Development

    最近ローソンでお菓子をたくさん買った田中です。 近頃読んで面白かった論文を紹介したいと思います。 A Play on Regular Expression 今年のICFPでFunctional Pearlとして発表されたものです。ICFP(International Conference on Functional Programming)というのは、関数プログラミングに関する国際学会で、Functional Pearlというのは、エレガントでためになる、関数プログラミングのテクニック集です。 この論文ではまず、正規表現マッチャを関数型言語(Haskell)でいかにエレガントに記述できるかが示されます。それから、エレガントさを保ったままの線形時間実装へ改良し、その実装がC++によるプロフェッショナルな実装(具体的にはGoogle re2)に匹敵するパフォーマンスを示すことが示されます。さら

    関数型的正規表現マッチ - Preferred Networks Research & Development
  • 1