並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 173件

新着順 人気順

finetuningの検索結果1 - 40 件 / 173件

  • 松尾研 LLM講座 講義コンテンツ | 東京大学松尾研究室 - Matsuo Lab

    松尾研究室が2023年9~10月に東京大学サマースクールで開催した LLM 大規模言語モデル講座のコンテンツを無償公開しています。 本講座は約2,000名の受講者が参加し、全7回の講義を実施しました。 最終課題としてGPUを使ったコンペティションでは約800名が参加し熱戦を繰り広げました。 現在、講義のスライドのみ公開しております。 ダウンロードは利用規約を確認の上、下記からダウンロードをお願いいたします。 最終更新: 2024年2月10日 問題・フィードバック報告フォームはこちら 第1回:Overview of Language Models LLMの概要、今後の各回の講義の概要、および日本のLLM開発状況について 第2回:Prompting and Augmented Language Model 事前学習済みLLMを追加学習せずに活用する技術(プロンプティング、⽂脈内学習、Augme

      松尾研 LLM講座 講義コンテンツ | 東京大学松尾研究室 - Matsuo Lab
    • ChatGPTで独自データを学習させて回答してもらう方法 - Qiita

      ChatGPT,使っていますか? ChatGPTは文章を要約したり、プログラム作ってくれたり、一緒にブレストしてくれたりして本当に便利なのですが、社内情報などの独自データに関する情報については回答してくれません。 プロンプトに情報を記述して、そこに書かれている情報から回答してもらう方法もありますが、最大トークン4000の壁がありますので、限界があるかと思います。 この課題についてなんとかならないかと考えて色々と調べて見たところ、解決する方法が見つかり、いろいろと検証をして見ましたのでその結果をシェアしたいと思います。 サンプルコード(GoogleColab) 百聞は一見にしかずということで、実際に試したサンプルは以下にありますので、まずは動かしてみることをお勧めします。 このコードを上から順番に動かすと、実際にインターネット上から取得したPDFファイルに関する内容をChatGPTが回答して

        ChatGPTで独自データを学習させて回答してもらう方法 - Qiita
      • Stable Diffusionを使って「いらすとや風画像生成モデル」を作った話 - ぬいぐるみライフ?

        今話題の画像生成モデル「Stable Diffusion」をいらすとやの画像でfinetuneしてみたところ、任意のテキストに対していらすとやっぽい画像を作れるモデルが出来上がりました。 Stable Diffusionとは Stable Diffusionは、指定されたテキスト(文字列)に対応する画像を生成する機械学習モデルのひとつです。ソースコードと学習済みモデルは無償で公開されていて、誰でも利用できるようになっています。 (Stable DiffusionのGitHubページより引用) 今回は、この画像生成モデルをいらすとやの画像でfinetune(微調整)することで、入力テキストに対応する画像をいらすとやのようなスタイルで出力させることを試みました。 開発環境 開発環境はGoogle Colab Pro+で、主にプレミアムGPU(NVIDIA A100)を使いました。Stable

          Stable Diffusionを使って「いらすとや風画像生成モデル」を作った話 - ぬいぐるみライフ?
        • 【AI動画生成】Sora 要素技術解説

          もう全部OpenAIでいいんじゃないかな はじめに 月間技術革新です。 ということで、昨日OpenAIから発表された新しい動画生成AI「Sora」が非常に話題となっていますね。 圧倒的な一貫性の保持と1分間に及ぶ長時間動画が生成可能という事で、現状の動画生成技術を圧倒的に凌駕する性能を持っているようです。 在野エンジニアの小手先テクニックなど一笑に付すような圧倒的性能を Soraの凄さは色んなエンジニアやインフルエンサーがたくさん語っているのでそちらを見てもらうとして、この記事ではSoraを構成する各技術について簡単に解説していければと思います。 Soraの技術構成 論文が公開されているわけではないですが、OpenAIが要素技術の解説ページを公開してくれているため、そのページを参考にしていきます。 原文を見たい方はこちらからどうぞ 全体構成 Soraは以下の技術要素で構成されているとのこと

            【AI動画生成】Sora 要素技術解説
          • 36億パラメータの日本語言語モデルを公開しました

            LINE株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。 LINEヤフー Tech Blog こんにちは。 LINEのNLP Foundation Devチームの清野舜と高瀬翔とoverlastです。 LINEでは2020年11月から日本語に特化した大規模言語モデル「HyperCLOVA」の構築と応用に関わる研究開発に取り組んできましたが、この「HyperCLOVA」と並行するかたちで複数の大規模言語モデルの研究開発プロジェクトが進行しています。 今回はそれらの研究開発プロジェクトのうち、我々を含むMassive LM開発ユニットから、日本語言語モデル「japanese-large-lm(ジャパニーズ ラージ エルエム)」をOSSとして公開できる状況になりましたので、本ブログを通じてお伝えすることにしました。 この記事

              36億パラメータの日本語言語モデルを公開しました
            • ChatGPTで独自データを扱うためのエンべディング|緒方 壽人 (Takram)

              【2023/11/7追記】 OpenAI Dev Dayにて、開発者向けの大型アップデートが発表されました。この記事で紹介している手法は、Retrieval-Augmented Generation(RAG)と呼ばれてきましたが、今回のアップデートでコンテクスト長(やりとりできるテキストの長さの上限)がこれまでの8Kから128K(12万8千トークン)に大幅にアップするため、一般的な本の内容は1冊分丸ごと渡すことができるようになります。独自データベースとの連携という意味では、ここで紹介している手法も引き続き有効な手法ですが、API関連でも様々な機能が追加されているので、リリースやSam Altmanによるキーノートは要チェックです。 ChatGPTは、膨大な量のテキストを学習してはいますが、天気予報のような最新の情報や、ある特定の本の内容や、特定のサービスの詳細についてはじめから知っているわ

                ChatGPTで独自データを扱うためのエンべディング|緒方 壽人 (Takram)
              • 歴代チャットボットと最近のLLMのまとめ - Qiita

                LLMs The History of Chatbots ELIZA (1966) 初期の人工知能プログラムのひとつ。 ルールベースの簡単なパターンマッチングで返答していた。 心理療法士の会話を模したELIZA(DOCTOR)が有名。 PARRY (1972) PARRYは偏執病的統合失調症患者をシミュレートしようとしたもの。 ELIZA(DOCTOR)と通信し話題となった。 Jabberwacky (1982, 1988, 1997) ユーモラスな人間同士の自然な会話をシミュレートすることを目的としていた。 ユーザーとの会話の大規模なデータベースを構築し、言語と文脈を学習することができた。 プロジェクト自体は1982年から開始されていたが、当初は学習機能は有していなかった。 ローブナー賞を2005年(George)、2006年(Joan)に受賞している。 ローブナー賞(Loebner P

                  歴代チャットボットと最近のLLMのまとめ - Qiita
                • ChatGPTを支えた高品質AI作成手法「RLHF」の中身はこんな感じ、面倒なデータ入力・整理はオープンソースでセルフホスト可能なプラットフォーム「Argilla」が便利

                  RLHFとは「人間の評価による強化学習」のことで、大規模言語モデルをChatGPTなどの実用レベルに至る品質にまで高めた実績のある手法です。RLHFでは教師データを作成したり、大規模言語モデルの回答を評価したりする際に人間がデータを入力する必要があり、特に複数人で作業する場合にデータの管理が大変になってしまうものですが、そうしたRLHF用データの入力や管理を行ってくれるプラットフォームが「Argilla」です。 Bringing LLM Fine-Tuning and RLHF to Everyone https://argilla.io/blog/argilla-for-llms/ 大規模言語モデルを作成する時の手順を示したのが下の図です。まず大量のテキストを用いて事前学習を行います。こうして作成されたモデルが事前学習済みモデルで、GPTやPaLM、LLaMAなどのモデルがこのカテゴリに

                    ChatGPTを支えた高品質AI作成手法「RLHF」の中身はこんな感じ、面倒なデータ入力・整理はオープンソースでセルフホスト可能なプラットフォーム「Argilla」が便利
                  • GPUメモリが小さくてもパラメーター数が大きい言語モデルをトレーニング可能になる手法「QLoRA」が登場、一体どんな手法なのか?

                    GPT-1は1億1700万個のパラメーターを持つ言語モデルで、GPT-2では15億、GPT-3では1750億とパラメーター数が増加するにつれて言語モデルの性能が上がってきています。しかしパラメーター数が増加するにつれてトレーニングに必要なデータの数やトレーニング中に使用するメモリの量も増加し、トレーニングのコストが大きく増加してしまいます。そんな中、メモリの消費量を激減させつつ少ないデータでトレーニングできる手法「QLoRA」が登場しました。 [2305.14314] QLoRA: Efficient Finetuning of Quantized LLMs https://arxiv.org/abs/2305.14314 artidoro/qlora: QLoRA: Efficient Finetuning of Quantized LLMs https://github.com/art

                      GPUメモリが小さくてもパラメーター数が大きい言語モデルをトレーニング可能になる手法「QLoRA」が登場、一体どんな手法なのか?
                    • OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ

                      OpenAI API ドキュメントの日本語訳をこちらでまとめます。文字量の多いドキュメントなので、セクションごとに記事を分割しています。 今回は「GET STARTED 」のセクションからLibraries 、Models、TutorialsそしてUsage policiesを抜粋した後編です。 基本 DeepLで翻訳して、気になるところだけ書き換えています(ほぼ気になるところがないのが、DeepLのすごいところ)。原文との突き合わせができるようにはじめに原文を入れてますので、間違いなど見つけられましたら、ぜひご指摘ください。ご指摘箇所は随時反映させていただきます。 原文のリンクが有効になってますので、それぞれ必要な場合は原文リンクの方を参照ください。 前回のおさらいはこちら Python library|Python ライブラリWe provide a Python library, w

                        OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ
                      • 【AI動画生成】Animate Anyone 論文解説

                        はじめに 11月も終わり、今年も残るところあと一か月となりました。 今年ももう終わるから今年中に成果を上げとけ!と言わんばかりに最近は新技術の登場が多いです。 今回取り上げるのも11月最後の大砲として出てきた新技術、その名もAnimate Anyone Animate Anyoneとはなんぞや 文字で説明するより見たほうが早い 凄くざっくり説明すると、一枚の絵と動きをボーン動画として入力すると、入力した絵がボーン動画と同じ動きをしてくれるよ!というもの。 似たようなものは今までもReferenceOnly × openpose × animatediffとかで出来ましたが、特筆すべきはその精度。 動画生成の大敵であるちらつきは一切なく、入力画像にかなり忠実な動画を生成しています。 さてこの技術、動画生成にずっと注目している自分としてはいますぐにでも弄り倒したいのですが、残念ながらコードとモ

                          【AI動画生成】Animate Anyone 論文解説
                        • OpenAIのファインチューニングAPIによる GPT-4 から GPT-3.5 への蒸留を試す|npaka

                          OpenAIのファインチューニングAPIによる GPT-4 から GPT-3.5 への蒸留を試したのでまとめました。 1. GPT-4 から GPT-3.5 への蒸留「LlamaIndex」で、OpenAIのファインチューニングAPIによる GPT-4 から GPT-3.5 への蒸留のColabが提供されてたので、それをベースに独自データで試してみました。 具体的には、「GPT-4」で学習データを生成し、「GPT-3.5」でファインチューニングすることで、「GPT-3.5」に「GPT-4」相当の知識を習得させます。 We successfully made gpt-3.5-turbo output GPT-4 quality responses in an e2e RAG system 🔥 Stack: automated training dataset creation in @ll

                            OpenAIのファインチューニングAPIによる GPT-4 から GPT-3.5 への蒸留を試す|npaka
                          • 画像生成AI「Stable Diffusion」に「悪い例を集めたLoRA」を組み合わせて高品質な画像を生成する手法が登場、簡単に試せるデモも公開されたので試してみた

                            2023年7月に公開された「Stable Diffusion XL 1.0(SDXL 1.0)」は既存のStability AI製モデルと比べて高品質な画像を生成できるだけでなく、LoRAによる生成画像の調整にも対応しています。データサイエンティストのマックス・ウルフ氏は「悪い例」を集めて作成したLoRAを用いてSDXL 1.0による生成画像の品質をさらに向上させる手法を考案し、LoRAファイルおよび誰でも試せるデモを公開しています。 I Made Stable Diffusion XL Smarter by Finetuning it on Bad AI-Generated Images | Max Woolf's Blog https://minimaxir.com/2023/08/stable-diffusion-xl-wrong/ LoRAは参考となる画像を集めて絵柄や服装などを追

                              画像生成AI「Stable Diffusion」に「悪い例を集めたLoRA」を組み合わせて高品質な画像を生成する手法が登場、簡単に試せるデモも公開されたので試してみた
                            • 作って遊ぼう!LLMを搭載した君だけのV&Lモデル!

                              はじめに TuringのBrain Research teamで頑張ってる井ノ上です。(Twitter: いのいち) Turingは完全自動運転の開発を目指しており、その実現のためには賢い頭が必要だと考えています。その方法の一つとして、近年の大規模言語モデル(LLM)に見られるような文脈理解力をうまく取り入れられないかと考えており、LLMとVisionの情報をかけ合わせたモデルに注目して研究を行っています。自動運転とVision and languageモデルについては、ぜひこちらの記事を読んでみてください。 今回の記事は2023年7月に開催されたABCI LLMハッカソンで取り組んだときに開発していたGIT-LLMというモデルの開発について解説する記事となっています。途中のコードの解説部分などは少し退屈に感じるかもしれませんので、その場合はぜひ結果のパートだけでも見てみてください。いろい

                                作って遊ぼう!LLMを搭載した君だけのV&Lモデル!
                              • Arxiv RAGによる論文サーベイの自動生成 | Shikoan's ML Blog

                                2.3k{icon} {views} 複数のLLM(GPT/Claude3)とArxivの検索APIをRAGで統合し、論文サーベイの自動生成を作りました。検索結果の前処理や、サーベイ特有のプロンプトエンジニアリングやソートが重要で、最適化手法として古くからある巡回セールスマン問題(TSP)が有効に機能しました。また、生成部分ではGPTよりClaude3の明確な有効性を確認できました。 できたもの Arxivの検索APIを使って検索拡張生成(RAG)したらサーベイを自動生成できた やっていること Arxivの検索ワードをGPT-4-Turboで生成 ArxivのAPIを叩いてヒューリスティックでフィルタリング OpenAIのEmbedding APIを叩く Embeddingに対して巡回セールスマン問題(TSP)を解いてソートをかける 論文の要旨をGPT-3.5-Turboで要約 ソートした

                                  Arxiv RAGによる論文サーベイの自動生成 | Shikoan's ML Blog
                                • CyberAgent社の日本語LLM OpenCALMの対話モデル用途のfinetune検証 - ACES エンジニアブログ

                                  こんにちは、ACESでアルゴリズムエンジニアとして働いている檜口です。最近はChatGPTを始めとする言語モデルの研究開発やプロダクト改善に取り組んでいます。 昨年末のChatGPTのリリース以降、大規模言語モデル(large language model, LLM)の社会実装が急速に進んできています。弊社でも商談解析AIツールACES MeetにLLMを組み込むなど、LLMの活用を広げています。こちらに関してはLLMを活用したAIまとめ機能リリースの裏側について過去記事を書いてありますのでご興味ある方はぜひご覧ください。 tech.acesinc.co.jp LLMはOpenAIのChatGPTが最も有名ですが、最近はオープンソースでモデルを開発する流れも活発になっています。特に、英語で学習したオープンソースモデルはMeta社のリリースしたLlamaを始めとして非常に強力なものがリリース

                                    CyberAgent社の日本語LLM OpenCALMの対話モデル用途のfinetune検証 - ACES エンジニアブログ
                                  • ABEJAで作った大規模GPTモデルとその道のり - ABEJA Tech Blog

                                    1. はじめに 2. そもそもGPTとは?? 3. ABEJAで作ったGPTモデルについて 3.1 モデルサイズ 3.2 データセット Wikipedia CC100 OSCAR mC4 3.3 参考にしたコード 3.4 モデルの学習 せっかくここまで育てたモデルが・・・ 4. 技術的な工夫点 4.1 データセットの前処理 4.2 GPT-neoxの活用 4.3 並列VMでの学習 4.4 モデルアーキテクチャの工夫 5 学習したGPTのアウトプット例 5.1 失敗モデルたちの作品集 5.2 完成モデルの出力例 5.3 少しFine-tuningした結果 6. 最後に 6.1 採用メッセージ 6.2 ABEJAで学習したGPTモデルの今後について 1. はじめに こんにちは、ABEJAの服部です。昨日、ABEJAが主催しているABEJA SIX2022でも発表がありましたが、NVIDIA社の

                                      ABEJAで作った大規模GPTモデルとその道のり - ABEJA Tech Blog
                                    • Building LLM applications for production

                                      [Hacker News discussion, LinkedIn discussion, Twitter thread] A question that I’ve been asked a lot recently is how large language models (LLMs) will change machine learning workflows. After working with several companies who are working with LLM applications and personally going down a rabbit hole building my applications, I realized two things: It’s easy to make something cool with LLMs, but ver

                                        Building LLM applications for production
                                      • BERT以降の事前学習済みモデルのトレンドと主要モデルを紹介! Part 1 学習方法編 - ELYZA Tech Blog

                                        はじめまして,インターン生の三澤遼です。本記事では,BERT以降の事前学習済みモデルを体系化し,主要なモデルについて解説します。TransformerやBERTについて事前知識があると理解しやすいと思います。 BERT以降のNLP分野の発展 学習方法の改良について 事前学習 Masked Language Modeling 改良版Masked Language Modeling RoBERTa (2019-07) Translation Language Modeling XLM (2019-01) Sequence-to-Sequence Masked Language Modeling T5 (2020-07) Permuted Language Modeling XLNet (2020-01) Denoising Auto Encoder BART (2019-10) Contras

                                          BERT以降の事前学習済みモデルのトレンドと主要モデルを紹介! Part 1 学習方法編 - ELYZA Tech Blog
                                        • 大規模言語モデルのFine-tuningによるドメイン知識獲得の検討 - Preferred Networks Research & Development

                                          本記事は、2023年夏季インターンシッププログラムで勤務された竹田悠哉さんによる寄稿です。 はじめに 2023年度のPFN夏季インターンに参加した、東京大学大学院工学系研究科の竹田悠哉と申します。学部では画像生成の研究をしていましたが、技術の社会実装をより俯瞰的に学びたいと思い、現在は技術経営戦略学専攻で教育工学の研究をしています。 インターンでは「機械学習技術の社会実装」をテーマに、LLM(Large Language Model)にドメイン知識を習得させることに取り組みました。様々な設定において、主に英語で学習されたモデルであるLLaMA2に対して日本語のデータでのFine-tuningを行い、LoRAやInstruction Tuning、ドメイン知識の習得に関する知見を得ることができたと思います。本記事では、そこで利用した技術の紹介と、日本語におけるドメイン知識の習得に関する実験、

                                            大規模言語モデルのFine-tuningによるドメイン知識獲得の検討 - Preferred Networks Research & Development
                                          • 最新の Google Gemma モデルを MLX を使ってローカルでファインチューニング|alexweberk

                                            今回は、最新の Google Gemma モデルを Apple Silicon に最適化されたライブラリ MLX を使ってローカルで実行したり、ファインチューニングしてみましたのでその手順を紹介します。 MLX 関連の情報はドキュメンテーションが分かりづらいものも多かったので色々試した経緯も共有しながら少しでも何かの参考になれば幸いです。 実際に使った Jupyter Notebook を Gist にアップロードしていますので、そちらも参考にしてください。 →Google Gemma モデルを MLX を使ってローカルでファインチューニング 事前準備必要なライブラリをインストールします。 また Apple Silicon 搭載の Mac が必要です。今回は M3 Max 128GB 搭載の MacBook Pro で実行しました。 !pip install -U mlx mlx_lm t

                                              最新の Google Gemma モデルを MLX を使ってローカルでファインチューニング|alexweberk
                                            • Kaggle Days World Championshipで優勝した話 - ABEJA Tech Blog

                                              ABEJAでデータサイエンティストをしている服部です。 2022年10月28, 29日にバルセロナにてKaggle Days World Championship Finalというデータサイエンスに関するイベント兼コンペティションが開催され、そこに参加しました。そして幸いなことに私の所属するチームが優勝することができました!! 本記事では今回のイベントそのものと、優勝に至るまでのコンペ上での過程や工夫点などについてご紹介しようと思います。 Kaggle Days World Championship Finalとは 1日目(ワークショップやプレゼンテーション等) Opening remarks by LogicAI and Kaggle HP introduction - Key note Kaggle Team - Ask Me Anything Winners team present

                                                Kaggle Days World Championshipで優勝した話 - ABEJA Tech Blog
                                              • BERTの精度を向上させる手法10選 - Qiita

                                                はじめに 自然言語処理タスクでBERTをfinetuningして使うことが当たり前になってきました。Kaggleなどのコンペや精度要件がきつい案件を行う場合に少しでも精度を向上させたいというシーンが増えてくると考えられます。そこで、精度向上手法をまとめます。タスクとしては分類タスクを想定しています。 文字数調整 学習済みのBERTに入力可能な単語数は最大512個です。そのため、512単語以上のテキストを使用する場合は特別な工夫が必要となります。ここの処理方法の変更が精度向上に寄与することが多いので要チェックです。 例として次のテキストから6単語取得することを考えます(句点も1単語とします) 吾輩 / は / 猫 / で / ある / 。 / 名前 / は / まだ / ない / 。 1. Head-Tail 吾輩 / は / 猫 / で / ある / 。 / 名前 / は / まだ / な

                                                  BERTの精度を向上させる手法10選 - Qiita
                                                • Kaggleで学んだBERTをfine-tuningする際のTips②〜精度改善編〜 | 株式会社AI Shift

                                                  こんにちは AIチームの戸田です 本記事では前回に引き続き、私がKaggleのコンペティションに参加して得た、Transformerをベースとした事前学習モデルのfine-tuningのTipsを共有させていただきます 前回は学習の効率化について書かせていただきましたので、今回は精度改善について書かせていただきます データ 前回に引き続きKaggleのコンペティション、CommonLit-Readabilityのtrainデータを使います validationの分け方などは前回の記事を参照していただければと思います 精度改善 一般的なニューラルネットワークモデルの精度改善方法として、ハイパーパラメータのチューニングやData Augmentationが上げられますが、ここではBERTを始めとするTransformerをベースとしたモデル(以降Transformerモデル)特有の工夫について

                                                    Kaggleで学んだBERTをfine-tuningする際のTips②〜精度改善編〜 | 株式会社AI Shift
                                                  • BERTによる感情分析を医療記事で実験してみた - エムスリーテックブログ

                                                    この記事はエムスリーAdvent Calendar 2020 20日目の記事です。 エンジニアリンググループ AI・機械学習チームの李です。弊社では記事に対して疾患薬剤などのタグを付与するシステムGaussと、記事についたタグとユーザーのPV情報を利用してユーザーに興味のあるタグを紐づけるシステムMaxwellが存在します。Maxwellで使う特徴量を増やしたいというモチベーションがあるのですが、1つ考えられるのは記事についたタグに対して感情分析の結果を追加で利用することです。そこで、感情分析タスクをBERTで解く論文「Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence」 (Sun et al., 2019) を弊社のサービスで提供される医療記事に適用してみました。 各

                                                      BERTによる感情分析を医療記事で実験してみた - エムスリーテックブログ
                                                    • 08月22日に公開された記事につきまして | The HEADLINE

                                                      公開日 2023年08月23日 18:00, 更新日 2023年09月15日 18:33, 無料記事 / お知らせ 本誌で、2023年08月22日に公開された記事「清水建設、東京の『田町タワー』竣工が3カ月遅れ=床の不具合で20億円超の追加費用発生見通し」につきまして、日本経済新聞様・日経クロステック様の記事に掲載された文章をそのまま用い、剽窃・盗用に該当すると言える箇所が確認されました。 両紙および本誌読者の皆さまに、謝罪とお詫びを申し上げます。特に本件は、日経クロステック編集部様の指摘を受けて発覚しており、同編集部様には重ねてご迷惑をお掛けしたことを謝罪致します。 また、当該記事は本誌記者による執筆ではなく、弊誌がβ版として開発・検証をおこなっている生成系 AI によって生成された記事でした。同 AI は、GPT4 をベースとしてファインチューニングおよび独自データベースとの繋ぎ込みな

                                                        08月22日に公開された記事につきまして | The HEADLINE
                                                      • kaggle LLMコンペ 上位解法まとめ

                                                        はじめに 科学分野の5択問題を解くLLMの精度を競うKaggle - LLM Science Exam というkaggleコンペが2023/10/11まで開催されていました。 コンペ終了後に公開された上位チームの解法からたくさん学びがあったので、備忘録も兼ねてまとめていきたいと思います。 コンペ概要 問題文(prompt)とA~Eの選択肢(option)が与えられ、それを解くモデルの精度を競うコンペでした。 テストデータはSTEM分野のWikipedia記事からGPT3.5に作成させたことがDataタブで明言されていました。 上位チーム解法まとめ 1. Approach 全てのチームが、問題の生成元となった記事をwikiテキストデータセットから検索(Retrieval)し、関連するテキスト(context)もモデルに入力するRAGと呼ばれるアプローチを採用していました。 RAGを行わないと

                                                          kaggle LLMコンペ 上位解法まとめ
                                                        • 大規模言語モデル(LLM)をLoRAで強化する際に役立つ情報を研究者が公開

                                                          LoRAは画像生成モデルや大規模言語モデル(LLM)に追加の情報を学習させてモデルを微調整できる仕組みです。LoRAを用いてLLMを強化する際に役立つ情報をAI研究者のセバスチャン・ラシュカ氏が解説しています。 Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation) https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms ◆LoRAの効果には一貫性がある Metaが開発したLLM「Llama 2」をLoRAで強化した際のベンチマーク結果を示した表が以下。「LoRA defaul 1」「LoRA defaul 2」「LoRA defaul 3」はそれぞれ異なるタイミングで作成されたLoRAモデルですが、ベンチマークスコア

                                                            大規模言語モデル(LLM)をLoRAで強化する際に役立つ情報を研究者が公開
                                                          • TensorFlow 2.0 時代の Keras API での画像分類器 - すぎゃーんメモ

                                                            TensorFlowを初期の頃から触っていて define-and-run の流儀にはそれなりに慣れてしまっていたけど、そろそろTensorFlowも2.0がreleaseされそうだし(2019.09時点で 2.0rc1) 新しいinterfaceも触っておかないと、と思って勉強してみた。 Effective TensorFlow 2.0 を読むと、major changesとして "Eager execution"、recommendationsとして"Keras layers and models"が紹介されている。 これからの時代はKeras APIを使ってEager executionでやっていく必要がありそうだ。 お題: 将棋駒画像の分類 昨年くらいから将棋の画像認識をやろうと思って 駒の画像データセットを作成 していた。今回はこれを使う。 各駒14種の先手・後手で28種、空白マ

                                                              TensorFlow 2.0 時代の Keras API での画像分類器 - すぎゃーんメモ
                                                            • 色々な生成AIモデルをColabで動かして今年を振り返る - ABEJA Tech Blog

                                                              こんにちは、ラボで研究開発をしたりプロトタイプを作っている藤本(X(Twitter))です。ABEJAアドベントカレンダー2023の21日目の記事です。ここ近年、生成AIの勢いが凄いです。最近は一夜明けたら世界が変わっているみたいなことがしょっちゅう起きています。そんな状況なので、なかなか世の中についていくのが難しいのではないかと思います。そこで今回は、これまでに色々と出てきた生成モデルを振り返りつつ、ひたすら思いつく限りColabで動かしまくってみる企画をやってみようかと思います。流石に全部Colabで動かすのは大変でした・・・。 まずは言語を対象として日本語モデルを含む様々なモデルを対象に推論実験を行います。続いて高速化の実験、更にSFTによるInstructionチューニングや、RLHFもやってみます。最後に、ソースコード生成もやってみましょう。次に、画像を対象として、言語同様に色々

                                                                色々な生成AIモデルをColabで動かして今年を振り返る - ABEJA Tech Blog
                                                              • What We Learned from a Year of Building with LLMs (Part I)

                                                                Join the O'Reilly online learning platform. Get a free trial today and find answers on the fly, or master something new and useful. Learn more It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B

                                                                  What We Learned from a Year of Building with LLMs (Part I)
                                                                • Text Classification: All Tips and Tricks from 5 Kaggle Competitions

                                                                  In this article, I will discuss some great tips and tricks to improve the performance of your text classification model. These tricks are obtained from solutions of some of Kaggle’s top NLP competitions. Namely, I’ve gone through: Jigsaw Unintended Bias in Toxicity Classification – $65,000 Toxic Comment Classification Challenge – $35,000 Quora Insincere Questions Classification – $25,000 Google QU

                                                                    Text Classification: All Tips and Tricks from 5 Kaggle Competitions
                                                                  • Alpaca-loraを日本語タスクでファインチューニングする - Qiita

                                                                    Alpaca-LoRAという家庭用GPUでも大規模言語モデルのFineTuningが可能なモデルが発表されました。 本記事では、livedoorニュースコーパスを使用してAlpaca-LoRAをFineTuningしてニュースのタイトルを考えさせるというタスクに挑戦してみます。 技術の概要 Alpacaとは Alpacaとは、先日Metaが発表したLLaMa 7Bをtext-davinci-003によるself-instructで生成されたデータを使用してFineTuningした言語モデル。 生成したデータは52K個で生成コストは500ドル以下と低コストです。 人間による予備評価では7Bという比較的小さなモデルにも関わらず、text-davinci-003に似た挙動を示すという報告があげられています。 Alpaca-LoRAとは Alpaca-LoRAとはAlpacaで作成したデータセット

                                                                      Alpaca-loraを日本語タスクでファインチューニングする - Qiita
                                                                    • Deep Learningの各種タスクにおけるベンチデータセットとデータ数をまとめた - Qiita

                                                                      ABEJAアドベントカレンダー2020の19日目の記事です。 この記事は何? 結局AIって何個データ必要なの?ってよく聞かれると思います。 そんなん知るか この記事では、ある程度精度が出ている既存のタスクにおいて、どんなデータを、どのくらいの量与えているかを調べた結果です。ちなみに、僕自身、すべてのタスクを扱ったことがあるわけでは無いので、ほぼ一部適当な部分もあるかと思いますが、ご容赦ください。あと、このデータが入ってないよ!ってツッコミも歓迎です。 あと、技術は常に進んでいるので、ちゃんと最新技術を追っておけば、より少ないデータで良い結果を出すことが出来ないこともない。が、最新技術とはいえ銀の弾丸ではないのが通常で、例えlightweightGANがでたからと言って、100枚で学習できます!とか勝手に広がると困っちゃう。色んなタスクにおいて、まぁ大体どんなタスクも一般的にはこんなもんよっ

                                                                        Deep Learningの各種タスクにおけるベンチデータセットとデータ数をまとめた - Qiita
                                                                      • 107. LLMをゼロから作るということ w/ Takahiro Omi | fukabori.fm

                                                                        MP3ファイルをダウンロード 内容紹介 ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。 出演者 話したネタ どのような大規模言語モデルと作ったのか?特徴は何か? データセットに何を使ったのか? 日本語と英語とのバランスは? 最終的なToken数は? 事前学習モデルを作りたいとして、何から考えるのか? ノイズのクリーニングと、その方法 今回活用したモデルアーキテクチャ(Llama) 前回のアーキテクチャは GPT-NeoX 今回の学習環境は? AWS Trainum 32コア x 16ノード 学習にかかった時間は? 学習時に大変だったこと・上手くいかなかったことは? 学習中のチェックポイントとは何か? なぜ、Token生成が速いのか? 手元でLLMを動かすときの一番のネッ

                                                                          107. LLMをゼロから作るということ w/ Takahiro Omi | fukabori.fm
                                                                        • 機械学習、NLP論文の書き方(英語)

                                                                          はじめに Kotoba Technologies, Inc. Co-Founder/CTO、Toyota Technological Institute at Chicago, Research Assistant Professorの笠井淳吾です。これまで自然言語処理(NLP)、機械学習の国際学会(ACL、ICLR、NeurIPS、EMNLP、ICCVなど)にて、投稿や発表を積み重ねてきましたが、一度自分なりに論文を書く際に考えていること、留意点、コツのようなものを言語化して共有したいと思います。個人の好みによるところも多々あるかと思いますので、取捨選択していただいて、皆さんの論文執筆の一助になることを願っています。 全体のストラクチャー まずは全体の流れから考えていきます。基本的に、論文を書く際には(多くの場合そもそもプロジェクトを始める前に)、タイトルをイメージしていきます。タイトル

                                                                            機械学習、NLP論文の書き方(英語)
                                                                          • DreamBooth

                                                                            DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation Nataniel Ruiz Yuanzhen Li Varun Jampani Yael Pritch Michael Rubinstein Kfir Aberman Google Research It’s like a photo booth, but once the subject is captured, it can be synthesized wherever your dreams take you… [Paper] (new!) [Dataset] [BibTeX] Abstract Large text-to-image models achieved a remarkable leap in the

                                                                            • 高効率のLLM学習手法ReFTを試してみる | 株式会社AI Shift

                                                                              こんにちは AIチームの戸田です 今回は先月スタンフォード大学が発表した新しいParameter-efficient fine-tuning(PEFT)のReFTを試してみたいと思います。 PEFT PEFTはLLMのような大規模な事前学習済みのニューラルネットワークのモデルを、効率的にfine-tuningする手法の総称です。モデル全体ではなく一部のパラメータだけを更新することで計算コストを大幅に削減できる上に、Full fine-tuning(モデル全体を学習)するのと同等の性能を達成することができると言われています。代表的なものにLow-Rank Adaptation(LoRA)が挙げられます。 ReFT Representation Finetuning (ReFT)は、LoRAとよく似たPEFT手法です。違いは、LoRAがモデルの重みを部分的に更新するのに対し、ReFTはモデルの

                                                                                高効率のLLM学習手法ReFTを試してみる | 株式会社AI Shift
                                                                              • Open challenges in LLM research

                                                                                [LinkedIn discussion, Twitter thread] Never before in my life had I seen so many smart people working on the same goal: making LLMs better. After talking to many people working in both industry and academia, I noticed the 10 major research directions that emerged. The first two directions, hallucinations and context learning, are probably the most talked about today. I’m the most excited about num

                                                                                  Open challenges in LLM research
                                                                                • Stable Diffusion (Diffusers)でLoRA~理論と実践~ | Shikoan's ML Blog

                                                                                  Stable DiffusionでのLoRAをdiffusersで試してみます。3Dモデルに対して、Unityで透過スクショを撮りLoRAで学習させるというよくあるやり方ですが、LoRAにおけるData Augmentationの有効性など興味深い点が確認できました。 はじめに 前々から気になっていたStable DiffusionのLoRAを使ってみました。3DモデルからスクショをとってLoRAで学習させるという「何番煎じだお前」って手法ですが、なかなかおもしろい結果になりました。 公式ドキュメント:https://huggingface.co/docs/diffusers/training/lora LoRAとは LoRAってよく使われる割には原著論文がそこまで解説されない気はします笑 (自分はNLPの専門家ではないので、この論文はさーっとしか読んでいませんが、 )原著論文はこちらで、

                                                                                    Stable Diffusion (Diffusers)でLoRA~理論と実践~ | Shikoan's ML Blog