並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 98件

新着順 人気順

algorithms for optimization pythonの検索結果1 - 40 件 / 98件

  • 放送大学マイルストーン('23)|lumpsucker

    はじめにこの記事は、放送大学の(主に情報コースを中心とする)学生さん向けに、私の履修済み科目の感想と主観的評価を共有して、履修計画の参考にしていただくことを目的に作成しました。下記の記事の通り、2019年-2020年の2年間で情報コースの科目を8割方履修したのでそれなりの網羅性があるかと思います。 (2023年2月追記)その後、選科履修生として履修した他コースの科目や大学院科目などを追加して112科目掲載しています。試験難易度については履修時期によって会場試験・在宅ペーパー試験・在宅Web試験が混在しているので参考程度でお願いします。 タイトルは私が現役生の時に通っていた大学の似たような評価システムから拝借しました。 以下の科目は基本的にナンバリングが低い順に並べています。閉講済みの科目も混じっていますが、記録と後継科目の参考のために残しておきます。あくまで全て(上記の記事にある通り、文系

      放送大学マイルストーン('23)|lumpsucker
    • This is The Entire Computer Science Curriculum in 1000 YouTube Videos

      This is The Entire Computer Science Curriculum in 1000 YouTube Videos In this article, we are going to create an entire Computer Science curriculum using only YouTube videos. The Computer Science curriculum is going to cover every skill essential for a Computer Science Engineer that has expertise in Artificial Intelligence and its subfields, like: Machine Learning, Deep Learning, Computer Vision,

        This is The Entire Computer Science Curriculum in 1000 YouTube Videos
      • 【動画解説】2020年に読んだAI論文100本全部解説(俺的ベスト3付き) - Qiita

        この記事は私, wataokaが1年間をかけて作り続けた超大作記事です. 総文字数は8万を超えていますので, お好みのところだけでもみていってください. ついにこの時が来ました!!!!! 1年間書き続けたQiita記事です!!!!! ご覧下さい!!!!!https://t.co/eKBwP1zoeB — 綿岡 晃輝 (@Wataoka_Koki) December 31, 2020 俺的ランキング 動画での解説も挑戦してみました! ぜひぜひご覧下さい! 動画のリンク 第3位: Likelihood-Free Overcomplete ICA and Applications in Causal Discovery wataokaの日本語訳「尤度が必要ない過完備ICAと 因果探索における応用」 種類: ICA 学会: NeurIPS2019 日付: 20190904 URL: https:/

          【動画解説】2020年に読んだAI論文100本全部解説(俺的ベスト3付き) - Qiita
        • 数理最適化の参考書

          専門家が執筆した数理最適化の書籍を紹介しています. 適当に書籍を並べただけですので内容については各自で確認をお願いします. 数理最適化全般 数理最適化の概観を知りたい人向け 穴井宏和,数理最適化の実践ガイド,講談社,2013. 中山舜民,オフィスsawa(作画),橘海里(イラスト),マンガでわかる数理最適化,オーム社,2024. 数理最適化を現実問題の解決に活用するプロセスを知りたい人向け 岩永二郎,石原響太,西村直樹,田中一樹,Pythonではじめる数理最適化(第2版) ―ケーススタディでモデリングのスキルを身につけよう―,オーム社,2024. 三好大悟,Excelで手を動かしながら学ぶ数理最適化:ベストな意思決定を導く技術,インプレス,2023. 数理最適化を初めて学ぶ人が手に取る入門書 福島雅夫,新版 数理計画入門,朝倉書店,2011. 久野誉人,繁野麻衣子,後藤順哉,数理最適化,オ

            数理最適化の参考書
          • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

            Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

              GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
            • awesome-scalability

              The Patterns of Scalable, Reliable, and Performant Large-Scale Systems View the Project on GitHub View On GitHub An updated and organized reading list for illustrating the patterns of scalable, reliable, and performant large-scale systems. Concepts are explained in the articles of prominent engineers and credible references. Case studies are taken from battle-tested systems that serve millions to

              • PyTorch vs TensorFlow in 2023

                PyTorch and TensorFlow are far and away the two most popular Deep Learning frameworks today. The debate over which framework is superior is a longstanding point of contentious debate, with each camp having its share of fervent supporters. Both PyTorch and TensorFlow have developed so quickly over their relatively short lifetimes that the debate landscape is ever-evolving. Outdated or incomplete in

                • AWS Certified Machine Learning Engineer - Associate(MLA)の学習方法 - NRIネットコムBlog

                  小西秀和です。 この記事は「AWS認定全冠を維持し続ける理由と全取得までの学習方法・資格の難易度まとめ」で説明した学習方法を「AWS Certified Machine Learning Engineer - Associate(MLA)」に特化した形で紹介するものです。 重複する内容については省略していますので、併せて元記事も御覧ください。 また、現在投稿済の各AWS認定に特化した記事へのリンクを以下に掲載しましたので興味のあるAWS認定があれば読んでみてください。 ALL SAP DOP SCS ANS MLS SAA DVA SOA DEA MLA AIF CLF 「AWS Certified Machine Learning Engineer - Associate(MLA)」とは 「AWS Certified Machine Learning Engineer - Associa

                    AWS Certified Machine Learning Engineer - Associate(MLA)の学習方法 - NRIネットコムBlog
                  • What We Learned from a Year of Building with LLMs (Part I)

                    It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B investment in AI by 2025. LLMs are also broadly accessible, allowing everyone, not just ML engineers and scientists, to build intelligence into

                      What We Learned from a Year of Building with LLMs (Part I)
                    • Prototyping in Rust | corrode Rust Consulting

                      Programming is an iterative process - as much as we would like to come up with the perfect solution from the start, it rarely works that way. Good programs often start as quick prototypes. The bad ones stay prototypes, but the best ones evolve into production code. Whether you’re writing games, CLI tools, or designing library APIs, prototyping helps tremendously in finding the best approach before

                        Prototyping in Rust | corrode Rust Consulting
                      • 100+ Best GitHub Repositories For Machine Learning

                        There are millions of GitHub repos and filtering them is an insane amount of work. It takes a huge time, effort, and a lot more. We have done this for you. In this article, we’ll share a curated list of 100+ widely-known, recommended, and most popular repositories and open source GitHub projects for Machine Learning and Deep Learning. So without further ado, Let’s see all the hubs created by exper

                          100+ Best GitHub Repositories For Machine Learning
                        • Rewriting the Ruby parser

                          At Shopify, we have spent the last year writing a new Ruby parser, which we’ve called YARP (Yet Another Ruby Parser). As of the date of this post, YARP can parse a semantically equivalent syntax tree to Ruby 3.3 on every Ruby file in Shopify’s main codebase, GitHub’s main codebase, CRuby, and the 100 most popular gems downloaded from rubygems.org. We recently got approval to merge this work into C

                            Rewriting the Ruby parser
                          • Changing std::sort at Google’s Scale and Beyond

                            TL;DR; We are changing std::sort in LLVM’s libcxx. That’s a long story of what it took us to get there and all possible consequences, bugs you might encounter with examples from open source. We provide some benchmarks, perspective, why we did this in the first place and what it cost us with exciting ideas from Hyrum’s Law to reinforcement learning. All changes went into open source and thus I can

                              Changing std::sort at Google’s Scale and Beyond
                            • Python open source libraries for scaling time series forecasting solutions

                              By Francesca Lazzeri. This article is an extract from the book Machine Learning for Time Series Forecasting with Python, also by Lazzeri, published by Wiley. In the first and second articles in this series, I showed how to perform feature engineering on time series data with Python and how to automate the Machine Learning lifecycle for time series forecasting. In this third and concluding article,

                                Python open source libraries for scaling time series forecasting solutions
                              • Shopify Invests in Research for Ruby at Scale - Shopify

                                Shopify Invests in Research for Ruby at ScaleShopify is investing on Ruby on Rails at scale by funding high-profile academics to focus their work towards Ruby and the needs of the Ruby community. Shopify is continuing to invest on Ruby on Rails at scale. We’ve taken that further recently by funding high-profile academics to focus their work towards Ruby and the needs of the Ruby community. Over th

                                  Shopify Invests in Research for Ruby at Scale - Shopify
                                • Kalyn: a self-hosting compiler for x86-64

                                  Over the course of my Spring 2020 semester at Harvey Mudd College, I developed a self-hosting compiler entirely from scratch. This article walks through many interesting parts of the project. It’s laid out so you can just read from beginning to end, but if you’re more interested in a particular topic, feel free to jump there. Or, take a look at the project on GitHub. Table of contents What the pro

                                  • MLOps guide

                                    Update (Jan 11, 2025): I’m working on a minimum viable curriculum for ML/AI engineering. Here’s the interest form if you want to test out the curriculum. A collection of materials from introductory to advanced. This is roughly the path I’d follow if I were to start my MLOps journey again. Table of contents ML + engineering fundamentals MLOps …. Overview …. Intermediate …. Advanced Career Case stud

                                    • Little Languages Are The Future Of Programming

                                      I’ve become convinced that “little languages”—small languages designed to solve very specific problems—are the future of programming, particularly after reading Gabriella Gonzalez’s The end of history for programming and watching Alan Kay’s Programming and Scaling talk. You should go check them out because they’re both excellent, but if you stick around I’ll explain just what I mean by “little lan

                                        Little Languages Are The Future Of Programming
                                      • Parsing Protobuf at 2+GB/s: How I Learned To Love Tail Calls in C

                                        [Note: there have been several developments in this space since this article was published. See A Tail Calling Interpreter For Python (And Other Updates) for the latest information about this technique.] I just landed an exciting feature in the main branch of the Clang compiler. Using the [[clang::musttail]] or __attribute__((musttail)) statement attributes, you can now get guaranteed tail calls i

                                        • ABCIでMPT-7Bのファインチューニングを試す|shi3z

                                          前提知識MPT-7Bは最近発表された商用利用可能な大規模言語モデルで、LLaMAに匹敵する性能を持っていると言われています。 ABCIは経産省が管轄する日本在住者なら誰でも安価に使えるスーパーコンピュータです。 (ただし登録がいろいろ大変なので法人が前提です/利用料は最低20万円から) 対象読者行間が読める人。本文が間違っていても自分でソースコードに手を加えて修正できるスキルがある人。ABCIを使えるポジションの人。 僕も人間なのでミスはよくありますし、備忘録とこれからやろうとする人のために書いています。質問は受け付けません(自分でなんとかしてください)。 準備思ったより大変だったのでメモ まず、大前提として自宅のA6000x2のマシンでできるかと思ったら、ダメだった(12:57更新。ウソ:A6000x2でちゃんとできました)。 まず、MPTはTransformerなのでRWKVと違い、V

                                            ABCIでMPT-7Bのファインチューニングを試す|shi3z
                                          • Real-world gen AI use cases from the world's leading organizations | Google Cloud Blog

                                            AI is here, AI is everywhere: Top companies, governments, researchers, and startups are already enhancing their work with Google's AI solutions. Published April 12, 2024; last updated October 9, 2025. A year and a half ago, during Google Cloud Next 24, we published this list for the first time. It numbered 101 entries. It felt like a lot at the time, and served as a showcase of how much momentum b

                                              Real-world gen AI use cases from the world's leading organizations | Google Cloud Blog
                                            • 文系学部卒でも無条件で不合格にならないアメリカのオンラインコンピューターサイエンス修士コースを調べ、出願校を決めた|Toshinori Sugita

                                              出願校最初の出願校は、ジョージア工科大学のOMSCSになりそうだ。履修できる授業の種類、オンラインコースの懐の深さ(合格率の高さ)(、費用)が主な理由だ。 前回の記事を書いた時点では、ペンシルバニア大学のMCITがベストではないかと考えていた。 しかし、他の選択肢を十分検討していなかったので、候補になり得るコースをリストアップして比較した。特に気にしたのは、つぎの点だ。 ・文系学士が無条件でNGにならない ・CS推奨であっても、テストやMOOCs受講、業務経験などでなんとかなる ・アメリカ(最初の候補として。イギリスやオーストラリアがダメというわけでは全然ないが、英語で学ぶことを前提としたい) ・授業(基礎、分散システム、その他機械学習、データサイエンスなど共通理解になり得るものが選択できる) ・出願要件の具体的な数字(英語テスト、書類、出願期限) ・合格率(オンラインはオンキャンパスと比

                                                文系学部卒でも無条件で不合格にならないアメリカのオンラインコンピューターサイエンス修士コースを調べ、出願校を決めた|Toshinori Sugita
                                              • The Koka programming language

                                                Statically typed programming languages can help catch mismatches between the kinds of values a program is intended to manipulate, and the values it actually manipulates. While there have been many bytes spent on discussions of whether this is worth the effort, some programming language designers believe that the type checking in current languages does not go far enough. Koka, an experimental funct

                                                • Optunaで始めるハイパーパラメータ最適化 - Preferred Networks Research & Development

                                                  この記事は、電気情報通信学会会誌に寄稿した解説記事「Optunaで始めるハイパパラメータ最適化」の転載です。この記事のパワーアップ版ともいえる書籍「Optunaによるブラックボックス最適化」が2月21日に出版されます。Optuna開発チームのメンバーが、Optunaについてより詳しく、よりわかりやすく説明し、より豊富な事例を紹介していますので、ぜひ予約して発売日からお読みください! 出典 柳瀬利彦, Optunaで始めるハイパパラメータ最適化, 電子情報通信学会誌 Vol.104 No.7 pp.728-733 2021年7月 ©電子情報通信学会2021 Abstract 機械学習アルゴリズムの性能を引き出すためには,ハイパパラメータをデータやタスクに応じて適切に調整する必要がある.本稿では,その自動的な調整のためのツールとして,オープンソースのハイパパラメータ最適化フレームワークであるO

                                                    Optunaで始めるハイパーパラメータ最適化 - Preferred Networks Research & Development
                                                  • A Lisp Interpreter Implemented in Conway’s Game of Life

                                                    Lisp in Life is a Lisp interpreter implemented in Conway’s Game of Life. The entire pattern is viewable on the browser here. To the best of my knowledge, this is the first time a high-level programming language was interpreted in Conway’s Game of Life. Running Lisp on the Game of Life Lisp is a language with a simple and elegant design, having an extensive ability to express sophisticated ideas as

                                                      A Lisp Interpreter Implemented in Conway’s Game of Life
                                                    • Andrej Karpathy — AGI is still a decade away

                                                      The Andrej Karpathy episode. Andrej explains why reinforcement learning is terrible (but everything else is much worse), why model collapse prevents LLMs from learning the way humans do, why AGI will just blend into the previous ~2.5 centuries of 2% GDP growth, why self driving took so long to crack, and what he sees as the future of education. Watch on YouTube; listen on Apple Podcasts or Spotify

                                                        Andrej Karpathy — AGI is still a decade away
                                                      • Accelerate Python code 100x by import taichi as ti | Taichi Docs

                                                        Python has become the most popular language in many rapidly evolving sectors, such as deep learning and data sciences. Yet its easy readability comes at the cost of performance. Of course, we all complain about program performance from time to time, and Python should certainly not take all the blame. Still, it's fair to say that Python's nature as an interpreted language does not help, especially

                                                        • Digital, digital and digital

                                                          戦略ファーム時代に読んだ700冊程度の本をまとめています*随時更新 戦略ファーム時代に読んだ700冊程度の本をまとめています I. 戦略 企業参謀 https://amzn.to/44iKVxM 当初、いまいち戦略というものが掴めきれず迷子になっていた時に「大前研一はこれだけ読め」と教わった本。大量に出ている他の大前本を読まなくて済むのが見過ごせない大きな価値 戦略サファリ 第2版 https://amzn.to/3csZg0t 経営戦略の本を読み漁るも、実プロジェクトの方が全くもって学びになるという普通の感想をもち、俯瞰での戦略論を求めるようになる。いやあ懐かしい 企業戦略論【上】基本編 競争優位の構築と持続 Jay Barney https://amzn.to/3dJjVxB 任天堂の戦略の妙に気が付きはじめ、ベースか似通ったものはないだろうかと思うようになった時にJay Barney

                                                            Digital, digital and digital
                                                          • Manuel Cerón

                                                            Last year I finally decided to learn some Rust. The official book by Steve Klabnik and Carol Nichols is excellent, but even after reading it and working on some small code exercises, I felt that I needed more to really understand the language. I wanted to work on a small project to get some hands-on experience, but most of my ideas didn’t feel very well suited for Rust. Then I started reading the

                                                            • What's new in Azure OpenAI in Azure AI Foundry Models?

                                                              This article provides a summary of the latest releases and major documentation updates for Azure OpenAI. August 2025 GPT-5 models available gpt-5, gpt-5-mini, gpt-5-nano To learn more, see the getting started with reasoning models page. gpt-5-chat is now available. To learn more, see the models page Registration is required for access to the gpt-5 model. gpt-5-mini, gpt-5-nano, and gpt-5-chat do n

                                                                What's new in Azure OpenAI in Azure AI Foundry Models?
                                                              • Code Language Converter - AI code converter between 120 programming languages

                                                                function add(a: number, b: number) { return a + b; }function add(a: number, b: number) { return a + b; } CodeConverter.com - The Ultimate Code Converter for All Programming Languages Welcome to CodeConverter.com, your go-to solution for converting source code between all programming languages. Whether you're a developer, programmer, or software engineer, our powerful code converter tool is designe

                                                                • Retrieval Augmented Generation at scale — Building a distributed system for synchronizing and…

                                                                  Disclaimer: We will go into some technical and architectural details of how we do this at Neum AI — A data platform for embeddings management, optimization, and synchronization at large scale, essentially helping with large-scale RAG. As we’ve shared in other blogs in the past, getting a Retrieval Augmented Generation (RAG) application started is pretty straightforward. The problem comes when tryi

                                                                    Retrieval Augmented Generation at scale — Building a distributed system for synchronizing and…
                                                                  • prompts.chat

                                                                    Welcome to the “Awesome ChatGPT Prompts” repository! While this collection was originally created for ChatGPT, these prompts work great with other AI models like Claude, Gemini, Hugging Face Chat, Llama, Mistral, and more. ChatGPT is a web interface created by OpenAI that provides access to their GPT (Generative Pre-trained Transformer) language models. The underlying models, like GPT-4o and GPT-o

                                                                    • NeurIPS 2022 参加報告 後編

                                                                      はじめに プロダクトオーナー兼機械学習エンジニアの本田志温です。 弊社高橋による前回の記事「NeurIPS 2022 参加報告 前編」 に引き続き、同会議の参加報告をします。本記事では、個人的に気になった論文(計53本)をいくつかのカテゴリで分類し、カテゴリごとに研究トレンドを大づかみにできるような形で書きます。特に重要だと感じた論文は詳しめに取り上げます。 会場の様子 また、本記事に関心をお持ちになった方は以下の過去記事もお楽しみいただけるのではないかと思います。ぜひ合わせてご覧ください。 AI開発の新たなパラダイム「基盤モデル」とは NeurIPS 2021 参加報告 前編 NeurIPS 2021 参加報告 後編 深層学習の原理 深層学習は様々なタスクで高い性能を発揮することが経験的に知られていますが、「なぜうまくいくのか」という原理についてわかっていることは多くありません。そのため

                                                                        NeurIPS 2022 参加報告 後編
                                                                      • Fast AutoML with FLAML + Ray Tune

                                                                        One of FLAML’s algorithms CFO tuning the # of leaves and the # of trees for XGBoost. The two heatmaps show the loss and cost distribution of all configurations. The black dots are the points evaluated in CFO. Black dots connected by lines are points that yield better loss performance when evaluated (image by authors).Authors: Qingyun Wu, Chi Wang, Antoni Baum, Richard Liaw and Michael Galarnyk FLA

                                                                          Fast AutoML with FLAML + Ray Tune
                                                                        • Frozen String Literals: Past, Present, Future?

                                                                          If you are a Rubyist, you’ve likely been writing # frozen_string_literal: true at the top of most of your Ruby source code files, or at the very least, that you’ve seen it in some other projects. Based on informal discussions at conferences and online, it seems that what this magic comment really is about is not always well understood, so I figured it would be worth talking about why it’s there, w

                                                                          • Who needs Graphviz when you can build it yourself?

                                                                            We recently overhauled our internal tools for visualizing the compilation of JavaScript and WebAssembly. When SpiderMonkey’s optimizing compiler, Ion, is active, we can now produce interactive graphs showing exactly how functions are processed and optimized. You can play with these graphs right here on this page. Simply write some JavaScript code in the test function and see what graph is produced

                                                                              Who needs Graphviz when you can build it yourself?
                                                                            • このPCAが熱いトップ10 - Qiita

                                                                              この記事はバイオインフォマティクス Advent Calendar 2020の22日目の記事です 今年はあまり書くことが思いつかなかったので、自分が注目しているPCA(Principal Component Analysis, 主成分分析)ベースの手法を紹介する。 1. Randomized PCA Halko, N et al., FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS, 2010 データを一度ランダムに低次元に射影してコンパクトにしてから扱うことで、大規模データ行列も高速・低メモリで計算できるPCA。 今年出したPCAのベンチマーク論文で、速度、精度ともに性能が良かった。 乱数を使っているのに、驚くほど正確

                                                                                このPCAが熱いトップ10 - Qiita
                                                                              • The Best GPUs for Deep Learning in 2023 — An In-depth Analysis

                                                                                Deep learning is a field with intense computational requirements, and your choice of GPU will fundamentally determine your deep learning experience. But what features are important if you want to buy a new GPU? GPU RAM, cores, tensor cores, caches? How to make a cost-efficient choice? This blog post will delve into these questions, tackle common misconceptions, give you an intuitive understanding

                                                                                  The Best GPUs for Deep Learning in 2023 — An In-depth Analysis
                                                                                • Engineering Trade-Offs in Automatic Differentiation: from TensorFlow and PyTorch to Jax and Julia - Stochastic Lifestyle

                                                                                  December 25 2021 in Julia, Programming, Science, Scientific ML | Tags: automatic differentiation, compilers, differentiable programming, jax, julia, machine learning, pytorch, tensorflow, XLA | Author: Christopher Rackauckas To understand the differences between automatic differentiation libraries, let’s talk about the engineering trade-offs that were made. I would personally say that none of thes

                                                                                    Engineering Trade-Offs in Automatic Differentiation: from TensorFlow and PyTorch to Jax and Julia - Stochastic Lifestyle