並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 57件

新着順 人気順

python format string float as intの検索結果1 - 40 件 / 57件

  • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

    お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

      浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
    • BigQuery SQL でレイトレーシング - Qiita

      BigQuery (Standard SQL) でレイトレーシングをしてみました。 レイトレーシングとは レイトレーシングとは、光の輸送(屈折や反射)を物理シミュレーションして現実的なCG画像を作りだす技術です。 最近では RTX や PS5 など、リアルタイムレイトレーシングが台頭してきています。 レイ トレーシングとラスタライズの違い | NVIDIA レイトレーシングではピクセルごとにレイを飛ばして計算するため計算量が膨大になりがちですが、 ピクセルごとに独立に計算することができるので、処理の高速化が期待できます。 それなら BigQuery が得意分野じゃないか?と思い今回の挑戦をしてみました。 BigQuery とは 超高速でSQLを分散実行し数秒でペタバイト級データに対しても結果が返ってくるデータ分析向けサーバーレス・データウェアハウスです。詳細は以下をごらんください。 Big

        BigQuery SQL でレイトレーシング - Qiita
      • Ollama で structured outputs (構造化出力)を試す|ぬこぬこ

        tl;drJSON Schema で指定したフォーマットで出力を制御可能になったよ cURL / Python / JavaScript のそれぞれで試してみたよ 具体的な実用例があったのでそれも動かしてみたよ 使う上での tips や今後どんな機能が追加されるかまとめたよ 公開されたブログの流れに準拠しつつ、意図がズレない範囲で翻訳、解説、コードの実行をしていきます。チュートリアルになっているので、よかったら手を動かして試してみてください。 Ollama が structured outputs をサポート。JSON Schema で定義したフォーマットに LLM の出力を制御するすることが可能になりました。Ollama の Python と JavaScript のそれぞれのライブラリにおいてもサポートするよう更新。 ブログでは structured outputs のユースケースとし

          Ollama で structured outputs (構造化出力)を試す|ぬこぬこ
        • MCP Python SDK のドキュメント|npaka

          以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

            MCP Python SDK のドキュメント|npaka
          • GPT in 60 Lines of NumPy | Jay Mody

            January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

            • Writing a C compiler in 500 lines of Python

              A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

              • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                  LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                • ゼロからはじめるPython(116) 金額合計ツールでExcel要らず - 合計/整形/コピーのツールを作ろう

                  Excelは万能なので、商品金額をいくつか足し算したいだけでもExcelを起動することがあるだろう。しかし、業務でよく足し算するのなら専用ツールを作ってしまうと便利だ。本稿では、計算処理をしてメールに貼り付けするという一連の処理を自動化するツールを作ってみましょう。 専用の税込み金額計算ツール 汎用ツールと専用ツールを使い分けよう Excelのような汎用表計算ツールに習熟しておけば、あらゆる計算処理をExcelだけで処理できる。世界中のオフィスでExcelが活躍しているのは、その高い汎用性と豊富な機能によるところが大きいだろう。 これに対して、簡単な専用ツールを自作するならば、汎用ツールを工夫して使うよりも、何倍も効率が良く、素早くタスクを完成させることができる。専用ツールは、特定のタスクに特化させるため、操作性がよく画面もシンプルで使い勝手の良いものとなる。 それで、今回は、入力した商品

                    ゼロからはじめるPython(116) 金額合計ツールでExcel要らず - 合計/整形/コピーのツールを作ろう
                  • 缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる

                    はじめに ——あるいは、「知っている」と「理解している」の間 Rustのことは、知っていた。学習もしていた。実務でも使っていた。 でも、それは知っているつもりだった。 知ってるつもり 無知の科学 (ハヤカワ文庫NF) 作者:スティーブン スローマン,フィリップ ファーンバック早川書房Amazon 日々Rustで開発し、BoxとRcとArcを使い分け、tokio::spawnでタスクを生成し、?演算子を当たり前のように書いている。FFI?PyO3使えばいいでしょ。WebAssembly?wasm-bindgenがあるじゃない。技術的には、確かに「使える」レベルにはあった。 でも、心のどこかで感じていた違和感があった。 オートバイのエンジンを分解できる人と、エンジンが動く原理を理解している人は違う。コードが動くことと、なぜそう書くべきかを理解することも違う。私は前者だった。メカニックではあった

                      缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる
                    • WSL2でunslothのGPROトレーニングを試してみる|noguchi-shoji

                      「DeepSeek-R1 の推論を自分のローカル デバイスで再現できるように」「わずか7GBのVRAMでアハ体験を」とのことなので、UnslothのGRPO(Group Relative Policy Optimizatin)トレーニングを試してみます。 今回は Phi-4 (14B)で試してみます。 You can now reproduce DeepSeek-R1's reasoning on your own local device! Experience the "Aha" moment with just 7GB VRAM. Unsloth reduces GRPO training memory use by 80%. 15GB VRAM can transform Llama-3.1 (8B) & Phi-4 (14B) into reasoning models. Blo

                        WSL2でunslothのGPROトレーニングを試してみる|noguchi-shoji
                      • タッパーの自己言及式の謎を解く - プログラミングの備忘録

                        こんにちは。 今回は「タッパーの自己言及式 (Tupper's self-referential formula)」を取りあげようと思います。 (記事タイトルを AI が生成してくれるようになったので、さっそく使ってみました。) 例のごとく、少し前にこんなツイートを見かけました。 Tupper's self-referential formula is a formula that visually represents itself when graphed at a specific location in the (x, y) plane. pic.twitter.com/QVxB3fozpe— Fermat's Library (@fermatslibrary) 2022年10月14日 (Fermat's Library は理系的な雑学のツイートが多く、知見が広がるのでよく見ていま

                          タッパーの自己言及式の謎を解く - プログラミングの備忘録
                        • Font with Built-In Syntax Highlighting

                          Note: I received a lot of great feedback from the discussions at Mastodon and Hacker News, so I've updated the post with some improvements to the font! I've also added some further examples and acknowledgements at the end. Syntax Highlighting in Hand-Coded Websites The problem I have been trying to identify practical reasons why hand-coding websites with HTML and CSS is so hard (by hand-coding, I

                          • Why I use attrs instead of pydantic

                            This post is an account of why I prefer using the attrs library over Pydantic. I'm writing it since I am often asked this question and I want to have something concrete to link to. This is not meant to be an objective comparison of attrs and Pydantic; I'm not interested in comparing bullet points of features, nor can I be unbiased since I'm a major contributor to attrs (at time of writing, second

                            • python_modules.pdf

                              Python3 OpenCV / Pillow / pygame / Eel / PyDub / NumPy / matplotlib / SciPy / SymPy / gmpy2 / hashlib, passlib / Cython / Numba / ctypes / PyInstaller / curses / tqdm / JupyterLab / json / psutil / urllib / zenhan / jaconv Copyright © 2017-2025, Katsunori Nakamura 2025 8 19 Python ‘ .py’ Python Python Windows PSF Python py .py Enter macOS Linux PSF Python python3 .py Enter Anaconda Prompt Python p

                              • はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場

                                今回は Fusion-In-Decoder を使ってクイズに答えるモデルを作ります。以前から Wikipedia 等の外部情報を参照できるテキスト生成モデルを試してみたいと思っていました。Fusion-In-Decoder の発表は 2020 年なので少し前のモデルですが、T5 ベースで手軽に試せるサイズ感ですので、日本語で試してみましょう。 1. はじめに 今回紹介する Fusion-In-Decoder(以下、FiD )1 は Meta AI (当時は Facebook AI Research) が発表した Open Domain question Answering タスクを解くテキスト生成モデルです。 じつは、以前から外部情報を参照できるテキスト生成モデルを試してみたくて2、 Google の RETRO3 の論文を読んでたんです。 なのですが、外部情報のサイズ感が 1000 B

                                  はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場
                                • 0.8.0 Release Notes ⚡ The Zig Programming Language

                                  Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                  • ​Getting Started with Python

                                    Python is a powerful programming language that provides many packages that we can use. Using the versatile Python programming language, we can develop the following: AutomationDesktop applicationAndroidWebIoT home automationData Science and the list goes on.In this article, our primary focus will be knowing how to start learning Python and the essentials required to be a data scientist. Below is t

                                      ​Getting Started with Python
                                    • 0.10.0 Release Notes ⚡ The Zig Programming Language

                                      Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                      • ChatGPT x LangChain で独自ドキュメントのベクターストア検索をチューニングする - GMOインターネットグループ グループ研究開発本部

                                        D.Mです。 ChatGPT を開発の現場で活かしていくためにベクターストア活用の方法を検証しました。 結論ファースト A. ベクターストアに入れる元ネタドキュメントの抽出 ⇒ unstructured が使えるかも B. ベクターストアに入れる元ネタドキュメントのチャンク分け ⇒ タイトル。キーワードをメタデータで付加 C. ベクターストアに投げる質問プロンプトの最適化 ⇒ 形態素またはキーワード抽出でプロンプトを精査 D. ベクターストア検索結果の精査 ⇒ ContextualCompressionRetriever による検索結果要約とDocumentCompressorPipeline による検索結果絞り込みがよさげ 「検索結果が質問に沿ったものか精査させる」タスクをChatGPTに担当してもらうことが私の業務課題には適しているのではという気付きがありました。 E. (おまけ)ベク

                                          ChatGPT x LangChain で独自ドキュメントのベクターストア検索をチューニングする - GMOインターネットグループ グループ研究開発本部
                                        • mold と呼ばれる高速なリンカを利用して Chromium を Build してみる - Nao Minami's Blog

                                          はじめに 現在、広く使われているリンカの中でもっとも高速なものとして有名なのは LLVM project の LLD でしょう。LLD のパフォーマンスについては、公式 document に以下のような benchmark が掲載されていて、GNU ld, GNU gold などと比較して圧倒的に早いという結果が示されています。 Program Output size GNU ld GNU gold w/o threads GNU gold w/threads lld w/o threads lld w/threads ffmpeg dbg 92 MiB 1.72s 1.16s 1.01s 0.60s 0.35s mysqld dbg 154 MiB 8.50s 2.96s 2.68s 1.06s 0.68s clang dbg 1.67 GiB 104.03s 34.18s 23.49s

                                            mold と呼ばれる高速なリンカを利用して Chromium を Build してみる - Nao Minami's Blog
                                          • 【GROMACS】Umbrella samplingによるMD simulation 【In silico創薬】【SMD】 - LabCode

                                            Windows 11 Home, 13th Gen Intel(R) Core(TM) i7-13700, 64 ビット オペレーティング システム、x64 ベース プロセッサ, メモリ:32GB Umbrella Samplingの概要と目的Umbrella Samplingは、分子がめったに起こさないような状態変化(たとえば、タンパク質同士が離れるなど)を詳しく調べるための計算手法です。通常の分子動力学(MD)では、エネルギー的に安定な状態にとどまりやすく、重要な変化が起こる確率が低いため、十分な情報が得られません。 たとえば、タンパク質AとBがくっついている状態から、少しずつ離れていく様子を観察したいとき、まずAとBを少しずつ引き離すSteered Molecular Dynamics(SMD)などのシミュレーションで、さまざまな距離の構造を取得します。その中から、0.5nm、0.7

                                            • とほほのFlask入門 - とほほのWWW入門

                                              Flaskとは インストール チュートリアル Hello world! デバッグモード ルーティング指定 @app.route() URL末尾のスラッシュ データを受け取る requestオブジェクト メソッド・パス情報 リクエストパラメータ その他のリクエスト情報 ファイルアップロード データを返却する レスポンスデータ HTTPステータス テンプレートファイル スタティックファイル レスポンスヘッダ Cookie リダイレクト URLを関数名で指定する その他ノウハウ エラーページのカスタマイズ JSONを扱う セッション ロギング 前処理・後処理 グローバルオブジェクト コンフィグ クラスメソッドを呼び出す 実装サンプル ログイン認証 REST-APIサンプル リンク Flaskとは 「フラスク」と呼ばれます。理科実験で使用する「フラスコ」と同じ単語です。 Pythonベースの軽量な

                                              • NumPy 2.0.0 Release Notes — NumPy v2.4.dev0 Manual

                                                Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage and interoperability Using NumPy C-API F2PY user guide and reference manual Under-the-hood documentation for developers Interoperability with NumPy Extras Glossary Release notes 2.4.0 2.3.

                                                • Apache Arrow の紹介 - GO Tech Blog

                                                  タクシーアプリ『GO』のデータエンジニアをしている牧瀬です。 Apache Arrow という OSS を知り、弊社でも活用できる機会があるのではないかと興味を持ちました。本記事では Apache Arrow の概要を紹介します。 概要 Apache Arrow とは、インメモリのカラムナーフォーマット仕様および、それを操作するための各種プログラミング言語用のライブラリ実装です。 Apache Arrow が作られた目的は、大きなデータセットを高速に処理したり、データセットを異なるシステムやプログラミング言語の間で効率的にやりとりするためです。 なぜインメモリ? 一般的なカラムナーフォーマットの多くはストレージに保存する際のフォーマットですが、Apache Arrow はインメモリの仕様も定められています。 これは 1台のマシン上で異なる言語やプロセスの間でデータをやり取りする際、シリアラ

                                                    Apache Arrow の紹介 - GO Tech Blog
                                                  • Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers

                                                    For demonstration purposes, we'll fine-tune the multilingual version of the small checkpoint with 244M params (~= 1GB). As for our data, we'll train and evaluate our system on a low-resource language taken from the Common Voice dataset. We'll show that with as little as 8 hours of fine-tuning data, we can achieve strong performance in this language. 1{}^11 The name Whisper follows from the acronym

                                                      Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers
                                                    • Vim9 script for Python Developers · GitHub

                                                      vim9script4pythondevelopers.md Vim9 script for Python Developers Vim9 script�Vim script��������������������������������������������������系��� def������義����������Vim script��vim9script�����使����������(vim9script���

                                                        Vim9 script for Python Developers · GitHub
                                                      • Geminiでマルチモーダル対応の生成AIチャットアプリを爆速で作ってみた - G-gen Tech Blog

                                                        G-gen 又吉です。Google の提供する最新の生成 AI モデルである Gemini を用いて、マルチモーダルな生成 AI チャットアプリを簡単に開発できましたので、ご紹介します。 概要 当記事の内容 デモ動画 前提知識 Gemini とは 使用するモデル Gradio Cloud Runサービスへのアクセス制御 準備 ディレクトリ構成 app.py requirements.txt Dockerfile デプロイ 動作検証 認証 テキストのみ 画像① 画像② 動画 利用状況の可視化 概要 当記事の内容 Google の提供する最新の生成 AI モデルである Gemini を用いて、テキスト、画像、動画の入力に対応したマルチモーダルな生成 AI チャットアプリを作ってみたので、当記事ではその開発の経緯をご紹介します。 実行環境として Google Cloud(旧称 GCP)の Clo

                                                          Geminiでマルチモーダル対応の生成AIチャットアプリを爆速で作ってみた - G-gen Tech Blog
                                                        • Node.js — Node.js v22.10.0 (Current)

                                                          Or if the package is only meant to be run on Node.js and wants to fallback to CJS on older versions that don't have require(esm): { "type": "module", "exports": { // On new version of Node.js, both require() and import get the ESM version "module-sync": "./index.js", // On older version of Node.js, where "module-sync" and require(esm) are // not supported, use the CJS version to avoid dual-package

                                                            Node.js — Node.js v22.10.0 (Current)
                                                          • Python: TFRecord フォーマットについて - CUBE SUGAR CONTAINER

                                                            TFRecord フォーマットは、TensorFlow がサポートしているデータセットの表現形式の一つ。 このフォーマットは、一言で表すと TensorFlow で扱うデータを Protocol Buffers でシリアライズしたものになっている。 特に、Dataset API との親和性に優れていたり、Cloud TPU を扱う上で実用上はほぼ必須といった特徴がある。 今回は、そんな TFRecord の扱い方について見ていくことにする。 使った環境は次のとおり。 $ sw_vers ProductName: macOS ProductVersion: 11.5 BuildVersion: 20G71 $ python -V Python 3.9.6 $ pip list | grep -i tensorflow tensorflow 2.5.0 tensorflow-datasets

                                                              Python: TFRecord フォーマットについて - CUBE SUGAR CONTAINER
                                                            • 防衛省サイバーコンテスト2023 Writeups - はまやんはまやんはまやん

                                                              [crypto] Simple Substitution Cipher [crypto] Substitution Cipher [crypto] Administrator Hash(NTLM hash) [crypto] Administrator Password [crypto] Hash Extension Attack [forensics] The Place of The First Secret Meeting [forensics] The Deleted Confidential File [forensics] They Cannot Be Too Careful. [forensics] The Taken Out Secrets [forensics] Their Perpetration [NW] Transfer [NW] Analysis [NW] Enu

                                                                防衛省サイバーコンテスト2023 Writeups - はまやんはまやんはまやん
                                                              • A string formatting library in 65 lines of C++

                                                                In this write-up, I will walk you through an implementation of a string formatting library for C++ I came up with for my video game. The end result came out really compact, at only 65 lines of code—providing a skeleton that can be supplemented with additional functionality at low cost. Usage Given a format buffer… char buffer[64]; String_Buffer buf = {str, sizeof str}; …the fmt::format function pr

                                                                • Node.js — Node.js v23.0.0 (Current)

                                                                  2024-10-16, Version 23.0.0 (Current), @RafaelGSS We’re excited to announce the release of Node.js 23! Key highlights include: Enabling require(esm) by default for Node.js applications Removing support for Windows 32-bit systems Stabilizing the node --run command Enhancements to the test runner, including glob pattern support for coverage files Node.js 23 will replace Node.js 22 as the ‘Current’ re

                                                                    Node.js — Node.js v23.0.0 (Current)
                                                                  • Cloud9 で SAM を利用し AWS サービス毎の請求額を毎日 Slack に通知する | DevelopersIO

                                                                    Cloud9 を利用して AWS のサービス毎の料金を毎日 Slack に通知する仕組みを作成しました。 コーヒーが好きな emi です。 AWSサービス毎の請求額を毎日 Slack に通知するため、以下のブログ AWSサービス毎の請求額を毎日Slackに通知してみた を見ながら設定しようとしたのですが、手元の Windows 11 端末に AWS CLI、AWS SAM CLI、Python などの開発環境を整えるのが面倒…!!と思いました。 そこで、AWS Cloud9 を使って手軽に一時的な開発環境を構築し、AWS Serverless Application Model (SAM) でサーバレス通知システムを構築しました。 AWS Serverless Application Model (SAM) とは AWS SAM は、サーバーレスアプリケーション構築用のオープンソースフレー

                                                                      Cloud9 で SAM を利用し AWS サービス毎の請求額を毎日 Slack に通知する | DevelopersIO
                                                                    • Vertex AI を利用して強化学習レコメンデーション アプリケーションをビルドする | Google Cloud 公式ブログ

                                                                      ※この投稿は米国時間 2021 年 8 月 18 日に、Google Cloud blog に投稿されたものの抄訳です。 強化学習(RL)は機械学習の形態の 1 つであり、エージェントが環境に対する行動を選択しながら、その一連の選択を通じて得られる目標(報酬)を最大化する方法を学習していくというものです。RL のアプリケーションの例として、学習ベースのロボット工学、自律走行車、コンテンツ配信などがあります。基本的な RL システムには、多くの状態、対応する行動、それらの行動に対する報酬が含まれています。これを映画のレコメンデーション システムで考えてみましょう。「状態」はユーザー、「行動」はユーザーにおすすめする映画、「報酬」は映画に対するユーザー評価に当てはめることができます。Applied ML Summit 2021 の基調講演 で Spotify が述べていたように、RL は ML

                                                                        Vertex AI を利用して強化学習レコメンデーション アプリケーションをビルドする | Google Cloud 公式ブログ
                                                                      • cuneicode, and the Future of Text in C

                                                                        Following up from the last post, there is a lot more we need to cover. This was intended to be the post where we talk exclusively about benchmarks and numbers. But, I have unfortunately been perfectly taunted and status-locked, like a monster whose “aggro” was pulled by a tank. The reason, of course, is due to a few folks taking issue with my outright dismissal of the C and C++ APIs (and not showi

                                                                          cuneicode, and the Future of Text in C
                                                                        • Running Clang in the browser using WebAssembly · Blog · Wasmer

                                                                          Running Clang in the browser using WebAssemblyDiscover how to compile C programs directly from JavaScript or any browser (Chrome, Firefox, Safari), and explore the powerful capabilities of the Wasmer JS SDK We’ve reached a major milestone in making any software run with WebAssembly. Thanks to the newest release of Wasmer (4.4) and the Wasmer JS SDK (0.8.0) you can now run clang anywhere Wasmer run

                                                                            Running Clang in the browser using WebAssembly · Blog · Wasmer
                                                                          • A from-scratch tour of Bitcoin in Python

                                                                            I find blockchain fascinating because it extends open source software development to open source + state. This seems to be a genuine/exciting innovation in computing paradigms; We don’t just get to share code, we get to share a running computer, and anyone anywhere can use it in an open and permissionless manner. The seeds of this revolution arguably began with Bitcoin, so I became curious to dril

                                                                            • Python behind the scenes #6: how Python object system works

                                                                              As we know from the previous parts of this series, the execution of a Python program consists of two major steps: The CPython compiler translates Python code to bytecode. The CPython VM executes the bytecode. We've been focusing on the second step for quite a while. In part 4 we've looked at the evaluation loop, a place where Python bytecode gets executed. And in part 5 we've studied how the VM ex

                                                                              • はじめての自然言語処理 ELECTRA(BERT の事前学習手法の改良)による固有表現抽出の検証 | オブジェクトの広場

                                                                                今回は BERT における事前学習の改良手法である ELECTRA の検証です。ELECTRA はモデルサイズ、データ、計算量が同一条件であればオリジナルの BERT を凌ぐ性能とのことなので結果が楽しみなところです。事前学習をした後のファインチューニングは、いつも livedoor News Corpus の文書分類ばかりだったので、今回は固有表現抽出を試すことにしました。 1. はじめに 今回は BERT における事前学習の改良手法である ELECTRA 1 の検証です。 BERT に関しては 第3回 で取り上げていますが、トークン化が Sentencepiece である為、トークン単位での処理に難がありました2。今回は ELECTRA を試すにあたり、そのあたりの対応も入れ、 Megagon Labs さんから公開されている UD_Japanese-GSD v2.6-NE 3 を使っ

                                                                                  はじめての自然言語処理 ELECTRA(BERT の事前学習手法の改良)による固有表現抽出の検証 | オブジェクトの広場
                                                                                • A Review of Nim 2: The Good & Bad with Example Code

                                                                                  I've been using Nim for about 1-2 years now, and I believe the language is undervalued. It's not perfect, of course, but it's pleasant to write and read. My personal website uses Nim. After reading a recent article on Nim ("Why Nim") and the associated HN comments, it's clear that comments and some information about Nim are misleading and outdated. Since Nim 2, a tracing Garbage Collector is not t