Explore and run machine learning code with Kaggle Notebooks | Using data from multiple data sources
CoQA is a large-scale dataset for building Conversational Question Answering systems. The goal of the CoQA challenge is to measure the ability of machines to understand a text passage and answer a series of interconnected questions that appear in a conversation. CoQA is pronounced as coca . CoQA paper CoQA contains 127,000+ questions with answers collected from 8000+ conversations. Each conversati
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Christopher Olah氏のブログ記事 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ の翻訳です。 翻訳の誤りなどあればご指摘お待ちしております。 ##リカレントニューラルネットワーク 人間は毎秒ゼロから思考を開始することはありません。このエッセイを読んでいる間、あなたは前の単語の理解に基づいて、各単語を理解します。すべてを捨てて、またゼロから思考を開始してはいません。あなたの思考は持続性を持っています。 従来のニューラルネットワークは、これを行うことができま
こんにちは。今年は冬休みをとても長くとったのですが、肉や蟹や餅や酒を連日消費しているうちに人体が終わっていき、気持ちになったので(様々な方向に感極まった状態のことを「気持ちになる」と表します)、世間で流行っているらしいディープラーニングの関連情報をつまみ食いしてチャットボットを作ってみることにしました。 入力文に対しニューラルネット(RNN)で応答文を生成して返事します。 @neural_chatbot というtwitterアカウントで動かしています。 ご興味があればぜひ@neural_chatbotに話しかけてみてください。 あらすじ ニューラルネットというものがあり、関数を近似することができ、知られています。 Recurrent Neural Network (RNN)というものがあり、内部状態を持つことができ、自然言語を含む可変長の系列を取り扱うのに便利で、知られています。 Sequ
皆さん、Word2vec の仕組みはご存知ですか? Word2vec は gensim や TensorFlow で簡単に試せるので使ったことのある方は多いと思います。しかし、仕組みまで理解している方はそう多くないのではないでしょうか。そもそも本家の論文でも内部の詳細については詳しく解説しておらず、解説論文が書かれているくらいです。 本記事では Word2vec のモデルの一つである Skip-Gram について絵を用いて説明し、概要を理解することを目指します。まずは Skip-Gram がどのようなモデルなのかについて説明します。 ※ 対象読者はニューラルネットワークの基礎を理解しているものとします。 どのようなモデルなのか? Skip-Gram はニューラルネットワークのモデルの一つです。Skip-Gram は2層のニューラルネットワークであり隠れ層は一つだけです。隣接する層のユニット
言語データの分析と応用のために自然言語処理と呼ばれる分野で長年研究が行われて来た。同分野が昨年から大きく沸き立っている。米グーグルの研究者であるトマス・ミコロフ氏らが提案した手法「Word2Vec」が、いくつかの問題について従来のアルゴリズムよりも飛躍的な精度向上を可能にしたのだ。 この手法によって得られるベクトル空間には、今まで定量的に捉えることの難しかった言葉の「意味」を極めて直接的に表現しているかのような性質が認められている。今年9月、当社がスポンサー参加した自然言語処理系の研究発表会「NLP若手の会 第9回シンポジウム」でも、多くの研究がWord2Vecに関連したテーマについて取り上げていた。今後、意味解析、文書分類、機械翻訳など様々な分野でWord2Vecの応用が期待されている。 「意味ベクトル」の驚異的な性質 Word2Vecは、その名前の表す通り、単語をベクトル化して表現する
言語処理100本ノックについて † 言語処理100本ノックは,言語処理を志す人を対象とした,プログラミングのトレーニング問題集です. 乾・岡崎研の新人研修勉強会の一つであるLearning Programmingで使われています. このトレーニングは,以下の点に配慮してデザインされています. 自然言語処理の研究を進める上で,一度は書いておいた方がよいプログラム 統計,機械学習,データベースなどの便利な概念・ツールを体験する 実用的で,かつワクワクするようなデータを題材とする 研究を進めるうえで重要なプログラミングのルール・作法を身につける モジュール性や組み合わせを考慮しつつ,短くてシンプルなプログラムを書く プログラムの動作を確認(デバッグ)しながらコーディングする 労力を節約する(既存のツール/プログラム/モジュールが使えるときは流用する) 計算資源(メモリ・実行時間)を無駄にしない方
先週のPFIセミナーで、Statistical Semantics入門という発表をしました。 主に分布仮説をベースにした、単語の意味を文脈の分布で表現する研究を纏めました。 LSIから始まって、PLSI、LDAと続く言語モデル系、NMFなどの行列分解系、そしてNNLM、RNNLMと来て昨年流行したニューラルネット系の3つでまとめるという形をとっています。 あまり専門的になりすぎず、過去からの歴史や流れを踏まえ、一方で実用面や研究テーマのココロ、問題意識を重視するような内容になるように心がけたつもりではあります。 当初、他の「いわゆる意味論」との比較みたいなスライドもあったのですが、変なコト言うと刺されると思ったので消しましたw ところで、応用の観点でこれらの話をどう考えているか、というような点について触れるのを忘れたな、と思ったのでこちらに書いてみます。 基本的に私見ですが。 私自身は、単
概要 この記事は自然言語処理という分野の最新手法word2vec を利用して誰でも遊べるようにするための手順を説明するものです。 word2vecを利用すると意味の計算が実現できます。 例えば"king"から"man"を引いて"woman"を足すと"queen"が出てきたり、 "東京"から"日本"を引いて"フランス"を足すと"パリ"が出てくるという面白い手法です。 自然言語処理とは人間が日常的に用いる自然言語をコンピュータに処理させ、 翻訳や要約、文字入力支援や質問応答システムを作るなどに活用されている分野です。 自然言語処理と言うと耳慣れない言葉かもしれませんが、 実は検索や推薦などで私たちが日常的に利用しているなじみ深い技術でもあります。 自然言語処理の適用範囲や要素技術は幅広いのですが、 その中でもword2vecの特色は、 冒頭でも挙げたように「意味の計算」が出来ることです。 これ
This is the companion website for the following book. Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA: May 1999. Interested in buying the book? Some more information about the book and sample chapters are available. If you are here to look up something that is mentioned in the book, click on the appropriate chapter link below. A l
gensimは前に以下の記事でも使ったPython用のトピックモデルなどの機能があるライブラリです。 小説家になろうのランキングをトピックモデルで解析(gensim) - 唯物是真 @Scaled_Wurm 以前紹介した以下の論文でもgensimが使われていました 論文紹介 “Representing Topics Using Images” (NAACL 2013) - 唯物是真 @Scaled_Wurm deep learningで話題になったword2vecの機能も取り入れてたりして面白いライブラリです Radim Řehůřek : Deep learning with word2vec and gensim 入力の作り方がすこしわかりにくいかなぁと思ったので、メモっておきます。 コーパスの作り方 以下の公式の例で説明します この例ではリスト内のそれぞれの要素が1つの文書となります
概要 Luceneは3.6から形態素解析機能も入って日本語文書が手軽に扱えるようになった。 Hadoopを使う際にこれらの機能を利用すれば何かと便利なんではなかろうかと思ったので、サンプルコードを書いてみた。 英語文書を扱ってみる 英語文書を単語に分割してカウントする処理を書いてみる。 下記はStandardTokenizerでsplitし、小文字で統一するLowerCaseFilter、「a, and, is, to」などの頻出文字列を取り除くStopFilter、単語末尾の「's」を取り除くEnglishPossessiveFilter、複数形などの揺れを統一するKStemFilterなどをかけてWordCountを行っている。 public class EnWordCountMapper extends Mapper<LongWritable, Text, Text, LongWri
海野です。ちょっと時間があいてしまいましたが、昨年の12月に開催されたNTCIR-9という会議のRecognizing Inference in TExt (RITE)というタスクに、前職の方々と共著で出場しました。 Syntactic Difference Based Approach for NTCIR-9 RITE Task. Yuta Tsuboi, Hiroshi Kanayama, Masaki Ohno and Yuya Unno. NTCIR-9, 2011. [pdf] 含意関係認識といわれるこのタスクは、大雑把に言うと与えられた2つの文が同じ意味のことを言っているかどうか判定しなさいというタスクです(厳密には一方からもう一方が帰結できるかの判定です)。今日は、その中で使ったTree Edit Distance (TED) について解説します。 TEDは2つの順序付き木が
はじめに Suffix Arrayあたりをちょっと調べてみたのでとりあえずメモ。 調べてみたら結構研究されていて全部まとめるのが面倒あとできちんと理解しておきたい。 Suffix Array(接尾辞配列)とは 文字列に対して、その文字列の接尾辞集合を辞書順ソートしたもの ここでの接尾辞集合は「abcd」という文字列の場合、以下の4つの接尾辞になる abcd bcd cd d これは各インデクスから最後までの部分文字列なので、元の文字列があればインデクスから部分文字列を得ることができる 与えられた文字列からある文字列が含まれるかどうかを検索したい場合、Suffix Arrayは辞書順に並んでいるので、2分探索することで高速に検索することができる 構築方法 普通のQuicksort 普通に文字列をソートする方法 QuicksortにO(n log n)、文字列比較にO(n)かかる Mamber
更新履歴 † 2020/03/28 英訳の一部に誤りがあったため、修正(V1-3) 2011/07/26 一部に空行があったため、修正(V1-2) 2011/07/13 公開開始(V1) ↑ データ概要 † 日本語基本文データ (2011/7/13 京都大学黒橋・河原研究室) 京都大学格フレームをベースに日本語の基本的な文を自動抽出し、人手で修正を行った5304文。文中のメタ記号は下記を意味する。 X : 名詞句または「...すること」などの節 ~: 引用文 (「~と誰かが思った」など) ※ ただし、数量に挟まれた「2~3」などは通常の意味 英語中国語基本文データ (2011/7/13 NICTマスタープロジェクト多言語翻訳研究室) 上記日本語基本文データを英語と中国語に翻訳したデータである。 ↑ サンプル † #0001 日: Xではないかとつくづく疑問に思う 英: I often wo
@gologo13さんの言語モデル配布ページのデータを利用して簡単な漢字->かな/かな->漢字変換ができないかなーと思って作ってみた。 言語モデルの作成には SRILMを使用。 配布中のデータを SRILM で扱うには多少加工しないといけないので、その変換スクリプトも作った。 GitHub リポジトリは https://github.com/hiroshi-manabe/ngram-converter 。 [追記]最新のバージョンでは、4-gram のかな漢字変換用辞書をあらかじめリポジトリに入れてある。 marisa-trie モジュールさえ入れてあれば、 ./converter_sample.py --dicname-prefix=dics/bccwj4_rev_dic --order=4 --interactiveですぐにかな漢字変換が実行できる。 まず、@gologo13さんの言語
はじめに この文書は、 Steven Bird, Ewan Klein, Edward Loper 著 萩原 正人、中山 敬広、水野 貴明 訳 『入門 自然言語処理』 O'Reilly Japan, 2010. の第12章「Python による日本語自然言語処理」を、原書 Natural Language Processing with Python と同じ Creative Commons Attribution Noncommercial No Derivative Works 3.0 US License の下で公開するものです。 原書では主に英語を対象とした自然言語処理を取り扱っています。内容や考え方の多くは言語に依存しないものではありますが、単語の分かち書きをしない点や統語構造等の違いから、日本語を対象とする場合、いくつか気をつけなければいけない点があります。日本語を扱う場合にも
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く