タグ

数学とquaternionに関するstranger2exのブックマーク (2)

  • 四元数で3次元回転 (ソースコード付き)

    四元数で3次元回転 中田 亨, 2003年11月25日 ★こうすれば四元数で3次元の回転が計算できる 四元数(しげんすう, クォータニオン, quaternion)を使った回転の取り扱い手順を説明します。 (1)四元数の実部と虚部と書き方 四元数とは、4つの実数を組み合わせたものです。4つの要素のうち、ひとつは実部、残り3つは虚部です。たとえば、Qという四元数が、実部 t で虚部が x, y, z から成り立っているとき、下のように書きます。 また、V = (x, y, z)というベクトルを使って、 Q = (t; V) とも書くことがあります。 正統的に虚数単位i, j, kを利用した書き方だと、 Q = t + xi + yj + zk とも書きますが、こっちはあまり使いません。 (2)四元数同士の掛け算 虚数単位同士の掛け算は ii = -1, ij = -ji = k (この他の組

  • 四元数 [物理のかぎしっぽ]

    実数は直線上の一点を,虚数は平面上の一点を表すものです. しかし,残念ながら3次元以上の一点を表すような数を美しく定義することは出来ません. それでも,乗法の交換則を犠牲にすればなんとか四元数というものを定義することが出来ます. 高校や大学でも四元数の話を少し習うかもしれませんが, 物理学で実際に四元数をどのように応用できるかというと,勉強する機会はあまり多くないかもしれません. 実は,四元数を使うと剛体の回転が美しく記述できるのです. 剛体の回転運動や,結晶構造の解析などに役立ちますし, 実際にスペースシャトルの姿勢を制御する計算にも四元数が使われています. 四元数の生い立ち 四元数はアイルランドの数学者ハミルトン( )によって考案されました. 年 月 日の夕方, ハミルトンがアイルランド科学アカデミーの会合に参加するため ダブリン市内のロイヤル運河沿いを歩いていたとき, 突如として四元

  • 1