四元数で3次元回転 中田 亨, 2003年11月25日 ★こうすれば四元数で3次元の回転が計算できる 四元数(しげんすう, クォータニオン, quaternion)を使った回転の取り扱い手順を説明します。 (1)四元数の実部と虚部と書き方 四元数とは、4つの実数を組み合わせたものです。4つの要素のうち、ひとつは実部、残り3つは虚部です。たとえば、Qという四元数が、実部 t で虚部が x, y, z から成り立っているとき、下のように書きます。 また、V = (x, y, z)というベクトルを使って、 Q = (t; V) とも書くことがあります。 正統的に虚数単位i, j, kを利用した書き方だと、 Q = t + xi + yj + zk とも書きますが、こっちはあまり使いません。 (2)四元数同士の掛け算 虚数単位同士の掛け算は ii = -1, ij = -ji = k (この他の組