タグ

algorithmに関するtk18のブックマーク (24)

  • さまざまなレート制限アルゴリズムをアニメーションでわかりやすく視覚化するとこんな感じ

    スパム防止などのためのレート制限を行うアルゴリズムは多数存在しています。さまざまなアルゴリズムの特徴をアニメーションでわかりやすくまとめたブログ記事をChatGPT関連のサービスsmudge.aiが開発ブログにて公開しました。 rate limiter – smudge.ai blog https://smudge.ai/blog/ratelimit-algorithms 配信のチャット欄にスパムが出現するという状況において、レート制限がない場合にはスパマーは短時間のうちに多数の投稿を行ってチャット欄を一人で埋め尽くしてしまいます。 左上の「Enable rate limiting」にチェックを入れるとレート制限を加えた場合の挙動が確認できます。レート制限が加わったことで、スパマーの投稿のほとんどをブロックしてチャット欄に与える影響を下げることができました。このとき、状況に応じて適切なアル

    さまざまなレート制限アルゴリズムをアニメーションでわかりやすく視覚化するとこんな感じ
  • 最急降下法 - Wikipedia

    n 次のベクトル x = (x1, x2, ... , xn) を引数とする関数を f (x) としてこの関数の極小値を求めることを考える。 勾配法では反復法を用いて x を解に近づけていく。k 回目の反復で解が x(k) の位置にあるとき、最急降下法では次のようにして値を更新する[1]。 ここで α は 1 回に更新する数値の重みを決めるパラメータであり、通常は小さな正の定数である。パラメータ α の適正な範囲は多くの場合、取り扱う問題の性質によって決まる。例えば力学問題を計算する際、計算結果が発散するような設定を与えることは、何らかの意味で非物理的な仮定をしている(あるいは元々のモデルの適用範囲を超えている)ことを示している。 例えば、y = x2 の最小値の探索において、α > 1 の場合、反復ごとに悪い解へと向かう。解の探索能力、収束速度は α に強く依存しており、α が大きすぎる

  • 大自然言語時代のための、文章要約 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? さまざまなニュースアプリ、ブログ、SNSと近年テキストの情報はますます増えています。日々たくさんの情報が配信されるため、Twitterやまとめサイトを見ていたら数時間たっていた・・・なんてこともよくあると思います。世はまさに大自然言語時代。 *from [THE HISTORICAL GROWTH OF DATA: WHY WE NEED A FASTER TRANSFER SOLUTION FOR LARGE DATA SETS](https://www.signiant.com/articles/file-transfer/the-

    大自然言語時代のための、文章要約 - Qiita
  • CASL II 入門講座 第5章 数値を10進数の文字列に変換する

  • グーグルはコードの品質向上のため「バグ予測アルゴリズム」を採用している

    グーグルでは、社内のプログラマによって作り出される大量のコードの品質を保つため、チェックイン前にユニットテストとコードレビューが行われているそうです。しかし、コードが大量になってくると、ユニットテストやレビューをすり抜けるバグも少なからず発生します。 そこでコードの品質をさらに高めるために、グーグルでは「バグ予測アルゴリズム」を採用。バグがありそうな部分をレビュアーにアドバイスする仕組みを採用したとのこと。 そのバグ予測アルゴリズムとはどんなものなのか。Google Engineering Toolsブログに投稿されたエントリ「Bug Prediction at Google」(グーグルにおけるバグ予測)で説明されています。 ソースコードの修正履歴を基に予測 コードの中にバグがありそうな箇所を分析する手法としては、「ソフトウェアメトリクス」がよく用いられます。これはコードを静的に分析して、

    グーグルはコードの品質向上のため「バグ予測アルゴリズム」を採用している
  • データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • 経路探索アルゴリズムの「ダイクストラ法」と「A*」をビジュアライズしてみた - てっく煮ブログ

    as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱりに書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス

  • 鯖缶Blog: 0と1の反転

    0と1の反転 今朝記事を読んでいておお!と思ったコード。 page = 1 - page http://itpro.nikkeibp.co.jp/article/Interview/20091104/340019/?ST=develop&P=2 1か0が入る変数pageで、1ならば0に、0ならば1にというコードです。 (元の出典は「「Bio_100%」(注:ドワンゴの母体となったゲーム・クリエイタ集団)が公開していた「gr.lib」というライブラリ」) Perlなら if($page){ $page = 0; }else{ $page = 1; } とでも書きそうですが、“$page = 1- $page;”の1行で済んでしまいますね。(0か1しか取らないという前提ですが) うん、この発想はなかった。きっとif文使っていたと思います。

    鯖缶Blog: 0と1の反転
  • 微分方程式を解こう! | _level0 - KAYAC Front Engineer Blog

    どうも。こんにちは。梅雨明けも宣言されたそうで、いよいよ暑くなりますね。今回は単振動方程式方程式を用いた最適化のお話です。 高校物理でも登場するバネの方程式、単振動方程式 を簡単な四則計算に分解する方法を紹介します。 まず色々な数学的背景を押しやって、イメージだけ説明すると、物体の位置x、速度v、加速度aの関係は となるので、asの式で考えると、 v += a; x += v; という風になります。ここで単振動の微分方程式から、 a = -K * x; であるから、あわせると、 v -= K * x; x += v; という風になります。下がサンプルで、初期値(_v, _y)やKなんかを変えて挙動が変わることが分かります。 ここでのポイントはvに対して最初の式で破壊的な操作を行っていることです。 v_temp = v; v -= K * x; x += v_temp; 等とすると、ずれてし

    微分方程式を解こう! | _level0 - KAYAC Front Engineer Blog
  • 転置インデックスを実装しよう - mixi engineer blog

    相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索

    転置インデックスを実装しよう - mixi engineer blog
  • ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室

    ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の

    ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室
  • グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ

    JGraphT JGraphTは、Javaのグラフライブラリです。グラフの描画ではなく、グラフ理論のモデルとアルゴリズムの方にフォーカスしています。とても使いやすかったので、紹介してみます。 無向グラフ UndirectedGraph<String, DefaultEdge> g = new SimpleGraph<String, DefaultEdge>( DefaultEdge.class); g.addVertex("a"); g.addVertex("b"); g.addVertex("c"); g.addEdge("a", "b"); g.addEdge("b", "c"); System.out.println(g.vertexSet()); System.out.println(g.edgeSet()); System.out.println(g.edgesOf("c"));

    グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

    tk18
    tk18 2009/04/10
  • 単純で正しそうなものが正しいとは限らない - Radium Software

    Coding Horror: The Danger of Naïveté 配列の中身をランダムな順序にシャッフルするコードを書きたい。単純でいいから分かりやすくて間違いの無いコードを書こう。例えば,こんな感じに…… for (int i = 0; i < cards.Length; i++) { int n = rand.Next(cards.Length); Swap(ref cards[i], ref cards[n]); } これは単純で分かりやすい! でも残念! このコードは間違っている。シャッフル後の順序に偏りが出てしまう。正解はこちら。 for (int i = cards.Length - 1; i > 0; i--) { int n = rand.Next(i + 1); Swap(ref cards[i], ref cards[n]); } ぱっと見て違いが分かる? イン

    単純で正しそうなものが正しいとは限らない - Radium Software
  • 著名ソーシャルメディアが使っているアルゴリズムを大公開! | Moz - SEOとインバウンドマーケティングの実践情報

    “アルゴリズム”は、もっとも非人間的なものの代表だともいえる。ソーシャルメディアにとって、そのアルゴリズムが不可欠だというのは、実に皮肉めいている。 僕はこの間、グーグルがどうやってユーザーデータを集めているかについて書いた記事を掲載した(前編、後編)。今回は、著名なソーシャルメディアサイトが、ユーザーデータを活用する上でどのようにアルゴリズムを用いているのか、白日の下にさらそう。 ソーシャルメディアを成り立たせているのは人間の力だが、ユーザーが入力したデータを利用できる状態にする仕組みは、アルゴリズムによって作られている。現在活動している無数のソーシャルメディアサイトで実証済みのことだが、ユーザーの関与とアルゴリズムによる処理ルールの上手いバランスを見出すことは、とても難しくなりがちだ。これから紹介するアルゴリズムは、悪意のないユーザーと結びついて初めてうまくいくものだ。 人気ソーシャル

    著名ソーシャルメディアが使っているアルゴリズムを大公開! | Moz - SEOとインバウンドマーケティングの実践情報
  • 1日で作る全文検索エンジン - Building a full-text search engine in "ONE" day - - とあるはてな社員の日記

    最近、「Introduction to Information Retrieval」というStanfordの大学院向け教科書のドラフトを読んでいます。id:naoyaあたりが勉強会で読んでいる教科書です。この教科書には、効率のいい全文検索システムを作るにはどうすればいいか、という(まさに)教科書的手法が網羅的に書いてあり、そのあたりに興味がある人には、非常に興味深く読めるお勧めのです。 ただ、面白い面白いと言っているだけでは、エンジニアとしては価値半減ですので、GW中にrubyで一日かけて実装してみました。 さすがに実装は、一日で作ったものですから、非常に素朴です。マルチバイト文字はbi-gramで、シングルバイトはスペースなどの区切り記号で認識しています。インデックスは、rubyの処理系のHashやArrayで保持しており、外部にMarshallで書き出す、というものです。検索エンジン

    tk18
    tk18 2008/05/14
    >検索エンジンを自前で持つ意味というのは、Google様の価値観とは異なる自分独自の価値観を持つことができ、かつ、それが有益な場合
  • 力試しにナベアツのような判定をするプログラムを作ろうとしたところ、問題が発生しました。…

    力試しにナベアツのような判定をするプログラムを作ろうとしたところ、問題が発生しました。 3の倍数や5の倍数は考えるまでもないんですが、3のつく数字をどう判定したらいいのかわかりません。 どのように判定させればよいのでしょうか?

  • アルゴリズム百選 - フィボナッチ数列にO()を学ぶ : 404 Blog Not Found

    2007年11月28日18:00 カテゴリアルゴリズム百選Math アルゴリズム百選 - フィボナッチ数列にO()を学ぶ 404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10、これほどの反響になるとは。200ブクマぐらいは予想していたが、もいくとは。 とりあえず、の仮題を「アルゴリズム百選」として、「アマグラマーのすすめ」と同じようにblogに草稿を書いていくことにする。「メインページ」の「アルゴリズム大募集! C&R研究所 - トップページ」の方も適宜更新していくが、「その場で動かせるコードサンプル」はここでないと書けないので。 ただし、「アマグラマーのすすめ」よりは書き方は順不同になるはず。それでも序文相当のことは「チラ見」ならぬ「チラ書き」しておいた方がいいだろう。というわけで、序文に変えて紹介するのが、Entry。 ヒントとな

    アルゴリズム百選 - フィボナッチ数列にO()を学ぶ : 404 Blog Not Found
  • 404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10

    2007年11月26日18:15 カテゴリMathLightweight Languages プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10 ぎくっ あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな なぜぎくってしているかというと、実はすでにアルゴリズムの発注を受けているからなのだ。いつまでも伏せておくのもなんなので、ここにえいやっとdiscloseしてしまうことにする。 アルゴリズム大募集! C&R研究所 - トップページ その下書きもかねて、そこでも紹介しないわけに行かないメジャーなアルゴリズムをとりあえず10個紹介しておくことにする。 ユークリッドの互除法(Euclidean algorithm) その昔(数百年ほど前)は「アルゴリズム」といえば、「手順一般」を指すのではなく、この「互除法

    404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10
  • 生年月日から年齢を計算する簡単な計算式:ITpro

    私の個人ブログに掲載したら好評でしたので、こちらでもご紹介してみます。 最近知ったんですが、生年月日から年齢を計算する簡単な計算式というのがあるそうです。 (今日の日付-誕生日)/10000の小数点以下切捨て。 PHPで書くと echo (int)((20070823 - 19850101)/10000); Perlで書くと print int ((20070823 - 19850101)/10000); JAVAで書くと System.out.println( (int)((20070823 - 19850101)/10000) ); という感じになります。 日の法律を確認してみました。誕生日の前日が終了する瞬間(すなわち誕生日をむかえる午前0時00分の直前)に1歳を加えることになる。ただしうるう年など、年によって期間を定めた場合において最後の月に応当する日がないときは、その月の末日を

    生年月日から年齢を計算する簡単な計算式:ITpro