タグ

brainに関するtnalのブックマーク (7)

  • 全脳アーキテクチャ解明に向けて

    ヒトの脳は大脳皮質、大脳基底核、海馬などの器官から構成される 汎用の機械学習装置です。 この脳全体のアーキテクチャの詳細が解明できれば、 人間のような知能を持ったロボットが実現可能になり、 人類に莫大な利益をもたらすでしょう。 今日ではそれは夢物語ではありません。 脳の各器官の計算論的モデルは不完全ながらすでに出そろっており、 それらがどう連携して脳全体の機能を実現しているのかを、 全力で解明すべき時期に来ています。 しかし、全脳アーキテクチャ解明を目指す研究者は、 その重要性に見合うだけの数がいるとは思えません。 このページでは、解明を目指す研究者が 1人でも増えるように、微力ながら情報発信していきます。 ◆NEWS!◆ 2014-05-07 ・汎用人工知能研究会の Web サイトができました。 汎用人工知能技術的特異点 この中に全脳アーキテクチャ勉強会のページもあります。 全脳アーキ

  • Invertebrate Brain Platform

    The Invertebrate Brain Platform offers you direct access to a growing database of information on nervous systems and behaviour of various species of invertebrates and a large body of ancillary material to promote the use of invertebrate systems in research and edcuation and facilitate information transfer to engineers that are looking for mechanisms that may be useful to solve a wide range of tech

    Invertebrate Brain Platform
  • 東大など、脳が記憶を意識的に想起する仕組みに関する新たな数理理論を発表

    東京大学(東大)は、脳の記憶想起において、脳が記憶を意識的に想起するメカニズムに関する新しい数理理論を提案し、数理モデルを構築したと発表した。 同成果は工学院大学 グローバルエンジニアリング学部の金丸隆志 准教授、京都産業大学の藤井宏 名誉教授、東大 生産技術研究所の合原一幸 教授らによるもの。詳細は科学雑誌「PLOS ONE」オンライン版に掲載された。 "記憶の想起"には意識的な想起だけでなく、意識せずに自律的にイメージが展開する有名なマルセル・プルーストの回想などが知られているが、中でも意識的な記憶の想起にどのような脳内機序が働いているのかは、よくわかっていなかった。特に「思い出そう」という能動的な心の働き(意識)が、脳内のニューラルネットワークにどのような働き(作用)をしているのか、アセチルコリンという単なる化学物質がなぜ「心」の動きに関連するのかといった問題は、謎のままである。 今

    東大など、脳が記憶を意識的に想起する仕組みに関する新たな数理理論を発表
  • 大脳皮質と deep learning の類似点と相違点

    脳とdeep learning のアーキテクチャには共通の特徴が多くありますが、 脳にはあるのに現在(2012年時点)の deep learning にはない重要な特徴もあります。 その中には deep learning の性能をさらに向上させる 有望なヒントが含まれているのではないかと思います。 そこで、大脳皮質と deep learning の類似点と相違点を簡単にまとめてみました。 特に「脳は上の層ほど発火がスパース」「脳はあまり深くなくむしろ横に広い」 「脳では領野ごとに強い個性がある」といった特徴は、 重要なのではないかと思います。 ◆ 大脳皮質に見られる「深いネットワーク」 大脳皮質の視覚野(腹側経路と背側経路)、聴覚野、体性感覚野、運動野には 「深いネットワーク」の構造が見られる。 これらの領域における主な領野の階層構造を [Felleman and Essen 1991]

  • 100年ぶりに脳の主要な記憶神経回路の定説を書き換え | 理化学研究所

    100年ぶりに脳の主要な記憶神経回路の定説を書き換え -海馬に新たな記憶神経回路を発見、記憶形成の謎解明へ大きく前進- ポイント 海馬のCA2領域を多角的かつ正確に同定 海馬で新しいトライシナプス性の記憶神経回路を発見、古典的定義を覆す 神経系変性疾患や精神神経疾患メカニズムの解明に貢献 要旨 理化学研究所(理研、野依良治理事長)は、マウスを使い、脳の記憶形成の中枢である海馬[1]の部位で最も解明が遅れていた領域「CA2[1]」を多角的な手法を使い正確に同定しました。さらに、CA2を介した新しいトライシナプス性[2]の記憶神経回路を発見し、逆に、存在すると主張されてきた回路が、実は存在していないということも証明しました。これは、理研脳科学総合研究センター(BSI、利根川進センター長)RIKEN-MIT神経回路遺伝学研究センター(CNCG)利根川研究室の小原圭吾リサーチサイエンティスト、ミケ

  • 『電気泳動で脳を透明化する技術』が凄い!Natureに出た衝撃の論文に世界中の科学者が沸く - アレ待チろまん

    2013-04-11 『電気泳動で脳を透明化する技術』が凄い!Natureに出た衝撃の論文に世界中の科学者が沸く 科学 2013年4月11日のNature誌に発表された画期的な論文を見て世界中の研究者が驚いています。 Structural and molecular interrogation of intact biological systems (Nature, 2013) 丸ごとの脳を透明化出来たと言うこの研究内容、いったいなにが凄いのでしょうか。簡単にご説明致します。 透明化した脳で見れる神経回路の美しさ! 「脳って白くてピンクで、透明化しても意味有るの?」と思われるかもしれません。近年の研究によって脳内の神経細胞に色を付ける技術が飛躍的に進みました。この論文では一部の神経細胞にGFPが発現した脳を透明化しています。まずは以下の動画をご覧下さい。脳内に存在する精緻な神経回路の

  • 東大など、数十年来の脳の謎を解明 - 脳回路が精密な配線であることを発見

    科学技術振興機構(JST)と東京大学は1月20日、脳の神経回路が、回路を形成する神経細胞「ニューロン」(画像1)より小さく、「シナプス」の単位で正確に編まれることで機能を発揮することを明らかにしたと発表した。東京大学大学院薬学系研究科の池谷裕二准教授らの研究グループによる発見で、成果は米科学誌「Science」に米国東部時間1月20日に掲載された。 画像1。ニューロンとシナプスの基構造。ニューロンは、樹状突起が広がる細胞体部分と、そこから長く伸びる軸索とで構成され、ほかのニューロンから受け取った情報を処理して、ほかのニューロンに伝えていく。シナプス部分では、神経伝達物質を使って情報をほかのニューロンに伝える 脳はニューロンと呼ばれる神経細胞からなり、各々のニューロンが、少しずつ情報を処理している。その処理結果は、ニューロン間の特殊な結合であるシナプスを介して、次のニューロンに伝えられる(

    東大など、数十年来の脳の謎を解明 - 脳回路が精密な配線であることを発見
    tnal
    tnal 2012/01/21
  • 1