タグ

ブックマーク / qiita.com/c60evaporator (4)

  • Amazon VPCを「これでもか!」というくらい丁寧に解説 - Qiita

    はじめに AWS上で仮想ネットワークを構築できるAmazon VPCは、多くのAWSサービスが動作する基盤となる、非常に重要かつ多機能なサービスです。 多機能ゆえに公式ドキュメントやネット上の記事も断片的な機能の解説が多く、全体像を把握することが難しいサービスとも言えます。 そこで記事はVPCの全体像を理解できるよう、各機能のつながりや動作原理を丁寧に解説し、 「VPC界の百科事典」 (あくまで例えですが…笑) となるような記事を目指したいと思います。 【追記】 実践編の記事を追加しました VPCの実画面での構築方法は、以下の別記事にまとめました。「VPCを実際に触ってみたい!」という方は、こちらもご一読いただけると嬉しいです。 VPCとは 「Virtual Private Cloud」の略で、クラウド上に仮想的なネットワークを構築するためのサービスです。 例えば、オンプレ環境でWebア

    Amazon VPCを「これでもか!」というくらい丁寧に解説 - Qiita
  • 機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita

    はじめに 私はこれまで機械学習のパラメータチューニングに関し、様々な書籍やサイトで学習を進めてきました。 しかしどれもテクニックの解説が主体のものが多く、 「なぜチューニングが必要なのか?」 という目的に関する記載が非常に少なかったため、体系的な理解に苦労しました。 この経験を後世に役立てられるよう、「初心者でも体系的に理解できる丁寧さ!」をモットーに記事にまとめたいと思います。 具体的には、 1. パラメータチューニングの目的 2. チューニングの手順とアルゴリズム一覧 3. Pythonでの実装手順 (SVMでの分類を例に) の手順で解説を進めます。 独自解釈も含まれるため、間違っている点等ございましたら指摘頂けると有難いです。 なお、文中のコードはこちらのGitHubにもアップロードしております。 2021/9/6追記:LightGBMのチューニング実行例追加 以下の記事に、Ligh

    機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita
  • 大阪都構想の投票結果を区ごとに分析してみた - Qiita

    はじめに 私は現在大阪市に住んでおり、一昨日の都構想投票はテレビにかじりつきながら見ていました。 経過を見ていて思ったのが、区ごとの結果の差が顕著に出ており、分析対象として適したデータが得られそうだと感じたため、詳しく分析してみました。 ※下図はおおさか維新の会HP掲載の、都構想における新旧区分け GitHubに、使用したスクリプトやクレンジング後のデータをアップロードしています Qiitaのガイドラインにあるように、あくまで技術記事としての領分を超えないよう、政治的な深い考察は避け、得られた事実のみを列挙していこうと思います。 また、私は因果推論のような高度な分析のスキルは持ち合わせていないので、「さらに深い知見を得るためにはこうしたらいい」 というような手法に関するアドバイスがございましたら、コメント頂けると大変ありがたいです! 結論 結論に至るまでの手順は次章以降で述べますが、以下の

    大阪都構想の投票結果を区ごとに分析してみた - Qiita
  • 家の中のセンサデータをRaspberryPiで取得しまくり、スーパーIoTハウスを実現 - Qiita

    はじめに 巷ではスーパシティ法によるデータ管理が話題ですが、 インドア派な私はシティの前にハウスで時代の波に乗ろう!と思い立ち、 大量のセンサデータをリアルタイムでダッシュボード表示する仕組みを作りました。 結論から言うと、センサデータを安定して見える化できるシステムが構築できたと感じています。 初心者の方でもわかりやすいよう、説明の飛躍のない記事作成を心がけたいと思います。 飛躍、間違い等あれば、ご指摘頂けるとありがたいです! 2021/12追記 さらに進化?したので以下の記事もご参照ください 必要なもの ・RaspberryPi(今回はPi3Model Bを使用) ・Python実行環境(今回はプリセットのPython3.7.3使用) ※RaspberryPiでのPython開発環境は試行錯誤の結果、こちらに落ち着きました ・Googleアカウント(スプレッドシートを使うのに必要) ・

    家の中のセンサデータをRaspberryPiで取得しまくり、スーパーIoTハウスを実現 - Qiita
  • 1