連載目次 機械学習は、今や私たちの生活や仕事に不可欠なテクノロジーです。朝起きてスマートフォンでチェックするニュース、それはあなたの関心に基づいて機械学習によって選ばれています。オフィスに到着すると確認する今週の売上予測レポート、これもまた過去のデータを基に機械学習が予測したものです。 これだけ便利な機械学習を、自分でも使いこなせたら素晴らしいですよね。それを可能にするのが、この連載の目的です(図1)。
Transformerに自分の好みのDLsite音声作品を学習させて、癖に刺さる新作を毎日通知するシステムを作った話PythonAWS自然言語処理機械学習個人開発 作ったもの DLsiteの新作音声作品をクローリング -> 好みかどうか推論 -> 好みならSlack通知をするシステムを完全サーバーレス(AWS SAM)で構築しました。さらなる精度向上のため、Slackメッセージのボタンをもとに教師データを蓄積する処理も作りました。 デモ(ぼかしMAX) とてもわかりにくいですが、好みであろう作品がPOSTされているSlackの画面です。各メッセージについている「興味あり!」「別に…」ボタンを押すとLambdaが起動し、DynamoDBに新たな教師データとして保存されます。 なぜ作ったのか DLsiteが好き、以上。 ・・・ もう少し真面目に書くと、 会社でテキストデータに触れることが多いの
後編 プログラミングを学ぼうと思い立つ行列はVBAなんかじゃ無理っぽいし、なんかプログラミング言語を覚えようと決める。 なんでも、統計やるならRという言語がいいらしい。 最近じゃPythonというのも人気らしい。 とりあえず両方試そうということで、RのためにRとRstudioをインストール。 Pythonはanaconda プログラミングはなんかを製作する目標がないと挫折すると聞いていたので。 深層学習というものが流行ってると聞いて、ちょっと触りを勉強したくなる。 「Excelでわかるディープラーニング超入門」 https://www.amazon.co.jp/Excel%E3%81%A7%E3%82%8F%E3%81%8B%E3%82%8B%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3
スタンフォード大学が提供するCourseraの機械学習コースの課題を日本語訳して、GitHubに公開してみました。 Courseraの機械学習コースの日本語訳 課題に含まれるPDFとスクリプト内のコメント部分を日本語訳しています。 以下のような方(で特に英語で苦戦した、しそうな方)にとって、役に立つのではないかと思います。 これから機械学習の勉強を初めてみようと思っている方 このコースを受けたけれど、挫折した方 講義のビデオは見たけれど、課題をやっていない方 このコースを既に修了したけれど、オプションの演習などを飛ばした方 このコースを既に修了したけれど、スクリプトの細部の実装などを見ていない方 このコースを既に修了したけれど、今の自分の能力を確認したい方(例えば、受講当時よりも、洗練されたOctaveの実装ができるかを確認してみる) Octave以外の言語(Pythonなど)で課題を1か
画像は公式サイトより アマゾン ウェブ サービス ジャパン株式会社(Amazon Web Services、AWS)は、機械学習のスキルを身につけられるとうたうトレーニングや「AWS 認定試験」の情報を掲載する「AWSで機械学習をマスターする」日本語版ページを公開した。 公式サイトより 同ページに掲載しているトレーニングは、機械学習、人工知能(AI)、ディープラーニング(深層学習)をビジネスに応用し、新しい分析情報や価値を手に入れる方法について学習できるというもの。65以上のデジタルコースを利用できる。価格は無料のものが多い。 公式サイトより 「デベロッパー」「データサイエンティスト」「データプラットフォームエンジニア」「ビジネス上の意思決定者」といったジャンルから、好きなトレーニングを選択することも可能。 たとえば、「データサイエンティスト」向けには、「データサイエンスの要素(中級コース
画像はUnsplashより 在宅時間が増加したであろう現在は、学生や社会人が人工知能(AI)やデータサイエンスについて身につける絶好のチャンスと言える。「AIについて何か勉強したい」「統計学について知りたい」という人も少なくないのでは。 近頃、Pythonなどのプログラミングについて勉強したり、データサイエンスについて知識を深めたりできる学習コンテンツが無料で公開される機会が増えつつある。そこで、2021年1月27日現在、無料で学べるAIやデータサイエンス関連の学習コンテンツを集めてみた。 総務省、社会人のためのデータサイエンス入門を無料開講 総務省は2021年1月12日開講した「誰でも使える統計オープンデータ」に先駆け、「社会人のためのデータサイエンス入門」を特別開講している。登録料および受講料は無料。 本講座では入門編として、統計学の基礎やデータの見方・データの取得方法などを学べる。統
要約すると, データサイエンス・機械学習周りでよく聞かれること&回答を言語化しました. 「データサイエンティストやりたい」「機械学習エンジニアになりたい」というキャリア志望を持つ方は多いと思います. 私の周りでも, 公私ともにそんな志望者の相談を聞いたり, (主にインターンの学生さんですが)一緒に仕事をしたりする機会もメッチャ多いです. 「ビジネスサイド強いマン」「サーバーサイドエンジニア」という視点からデータエンジニア兼データサイエンティストな自分が, そんな彼ら彼女らにオススメしている, データサイエンティストを目指すためのスキルマップ 各領域のスキルアップを実現するためにオススメしたい書籍 を紹介したいと思います. なお, 昨年も同様のエントリーを書いておりそのUpgrade版となります. shinyorke.hatenablog.com このエントリーの対象読者 データサイエンスに
機械学習に必要な知識 ネット上の様々な意見 機械学習への携わり方と必要な数学 具体的に勉強を進める 簡単な問題で動作を確認 プログラムを書く Kaggleはやるべき? 勉強を進める上で使えるツールたち Python Jupyter Notebook scikit-learn TensorFlow 機械学習に必要な知識 ネット上の様々な意見 機械学習の勉強をしていく上で大事なものは何でしょうか。 調べればプログラミングだとか統計だとか、解析学・線形代数学であるなど、いろいろな意見が見られます。 おそらくネット上で見つかるいろいろな意見、「機械学習では○○を勉強すべき」という話は、少なくともその話を言っている人の中では真であるのだろうと思われます。 要するに、その勉強をしたことによって(あるいはその知識を持っていたことによって)、その人は何らかの機械学習に対する知見が得られたと言っているのです
この記事は2年前の以下の記事のアップデートです。 前回はとりあえずデータサイエンティストというかデータ分析職一般としてのスキル要件として、「みどりぼん程度の統計学の知識」「はじパタ程度の機械学習の知識」「RかPythonでコードが組める」「SQLが書ける」という4点を挙げたのでした。 で、2年経ったらいよいよ統計分析メインのデータサイエンティスト(本物:及びその他の統計分析職)vs. 機械学習システム実装メインの機械学習エンジニアというキャリアの分岐が如実になってきた上に、各方面で技術革新・普及が進んで来たので、上記の過去記事のスキル要件のままでは対応できない状況になってきたように見受けられます。 そこで、今回の記事では「データサイエンティスト」*1「機械学習エンジニア」のそれぞれについて、現段階で僕が個人的に考える「最低限のスキル要件」をさっくり書いてみようかと思います。最初にそれらを書
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く