この例に関する質問への回答を補足の項に記載しましたので、より良い理解のためにご参照ください。 1.3 モデル構造 トランスダクションモデル(ある文章を他の文章に変換するモデル(翻訳など))において主流なのは以下のようなエンコーダ-デコーダモデルである。 エンコーダ: 入力の文 $(x_1,\ldots,x_n)$ を $\boldsymbol{z}=(z_1,\ldots,z_n)$ へ変換 デコーダ: $\boldsymbol{z}$ から単語 $(y_1,\ldots,y_m)$ を出力。 ただし、1時刻に1単語のみで、前時刻のデコーダの出力を現時刻のデコーダの入力として使う。 Transformerは基本的な大枠はエンコーダ-デコーダモデルでself-attention層とPosition-wise全結合層を使用していることが特徴。 つまり、以下の3つ(+2つ)のことが分かればモデル
こんにちは Ryobot (りょぼっと) です. 本紙は RNN や CNN を使わず Attention のみ使用したニューラル機械翻訳 Transformer を提案している. わずかな訓練で圧倒的な State-of-the-Art を達成し,華麗にタイトル回収した. また注意を非常にシンプルな数式に一般化したうえで,加法注意・内積注意・ソースターゲット注意・自己注意に分類した.このうち自己注意はかなり汎用的かつ強力な手法であり他のあらゆるニューラルネットに転用できる. WMT'14 の BLEU スコアは英仏: 41.0, 英独: 28.4 で第 1 位 Attention Is All You Need [Łukasz Kaiser et al., arXiv, 2017/06] Transformer: A Novel Neural Network Architecture f
この記事についてこの記事ではGPT-3[1]の解説をします。内容のサマリは以下の通りです。 GPT-3の前身であるGPT-2では、巨大なデータセット+巨大なネットワークで言語モデルを構築し、各タスクで学習させなくても良い結果が得られた。 GPT-3では、さらに巨大なデータセット+さらに巨大なネットワークで言語モデルを構築し、数十のサンプルを見せると凄く良い結果が得られた 一方、様々なタスクに言語モデルのスケールアップのみで対応することへの限界が見えてきた。人種、性別、宗教などへの偏見の問題や、悪用に対する課題もある。 この記事の流れは以下の通りです。 1. Transformer, GPT-2の説明 2. GPT-3のコンセプトと技術的な解説 3. GPT-3ので上手くいくタスク 4. GPT-3で上手くいかないタスク 5. 偏見や悪用への見解 ※ 有料設定していますが、投げ銭用の設定なの
OpenAIはGPT-3の次の研究を始めています. 世間がGPT-3のデモに湧き上がる中,OpenAIはScaling Lawに関する2本の論文をひっそりと公開しました. Scaling Lawを一言で説明するなら「Transformerの性能はたった3つの変数のべき乗則に支配されている」というものです. Scaling Lawはそれ単体だけなら興味深い話で終わるかもしれません.実際に英語圏でもあまり話題にあがっていません.しかし,この法則の本当の凄さに気づいている研究者もいて,なぜ話題にならないのか困惑しています. I am curious why people are not talking more about the OpenAI scaling law papers. For me, they seem very significant. What I heard so far:
ざっくり理解する分散表現, Attention, Self Attention, Transformer機械学習DeepLearningAttentionbertTransformer はじめに 自己紹介 : Pythonでデータ分析とかNLPしてます。 Attention, Self Attention, Transformerを簡単にまとめます。 間違いがあったらぜひコメントお願いします。 モチベーション BERT(Google翻訳で使われてる言語モデル)を理解したい。 BERT : 双方向Transformerを用いた言語モデル。分散表現を獲得でき、様々なタスクに応用可能。 Transformer : Self Attentionを用いたモデル。CNNとRNNの進化系みたいなもの。 Self Attention : Attentionの一種。 Attention : 複数個の入力の内
Jay Alammar Visualizing machine learning one concept at a time. @JayAlammar on Twitter. YouTube Channel Discussions: Hacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments) Translations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish 2, Vietnamese Watch: MIT’s Deep Learning St
Amazon Prime 一ヶ月無料 Seq2seqからBERTまでのNLPモデルの歴史をざっとまとめる。 DNNは知ってるけどTransformerってなんだかわからない、って人におすすめです。 Abst. 画像認識にもTransformerが使われることが多く、DeepRLやGPT-3といったNLPモデルも身近になってきています。"Attention is 何?"と言えなくなってきたので勉強しました。 Feedforward NetworksからSeq2Seq, Attention機構からTransformer登場、そしてBERT GPTといった最新モデルまでの流れを広く浅く記述する予定。 またKaggle NLPコンペの上位解法から利用例を探る。 Tl;DR TransformerはSelf-Attentionという機構でデータ内の時系列的特徴を抽出でき、従来のRNNを始めとするNN
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く