タグ

ブックマーク / deepage.net (7)

  • Pythonでの数値計算ライブラリNumPy徹底入門

    NumPyは、多次元配列を扱う数値演算ライブラリです。機械学習だけでなく画像処理、音声処理などコンピュータサイエンスをするならNumPyを学んでおくことで、あなたの日々の研究や開発の基礎力は格段にアップするはずです。 プログラミングの初心者から、Webエンジニア、これから研究する人など、初学者にも分かりやすく優しく説明することを心がけて必要な知識が身につくように解説しています。 腰を据えて学習する時間と余裕のある方は、Step1から順に進めていくことで、苦手意識のあった方でも一通り読み終わる頃には理解できなかったPythonとNumPyのソースコードがスラスラと読めるようになるはずです。 上級者の方は、分からない記事だけ読むだけでも、力になると思われます。あなたのプログラミング能力を向上する手助けになることをお約束します。このサイトを通して、コンピュータサイエンスに入門しましょう。 Ste

    Pythonでの数値計算ライブラリNumPy徹底入門
    Nyoho
    Nyoho 2018/03/22
  • 高次元のデータを可視化するt-SNEの効果的な使い方

    t-SNEは、高次元のデータを可視化する手法としては、非常に便利ですが、時々不可解な挙動をしたり、誤解を招くような可視化をすることがあります。 シンプルなデータを可視化して動作の仕組みを理解することで、t-SNEのより効果的な使い方を学ぶことができます。 t-SNEは、高次元のデータを調査するための手法として、2008年にvan der MaatenとHintonによって発表 [1] された人気の手法です。 この技術は、数百または数千次元のデータですら無理やり2次元の「マップ」に落とし込むという、ほとんど魔法のような能力を備えているために、機械学習の分野で幅広く普及しています。 このような印象を持っている方が多いのですが、こういった捉え方をしていると誤解を招くこともあります。 この記事の目的は、よくある共通の誤解を解くためでもあります。 t-SNEで可視化できることと、できないことを説明す

    高次元のデータを可視化するt-SNEの効果的な使い方
  • これさえ読めばすぐに理解できる強化学習の導入と実践

    強化学習の位置づけ 教師あり学習 教師なし学習 強化学習 強化学習の応用事例 Atariの攻略 AlphaGo ロボットの自動動作獲得 ファイナンスへの応用 広告配信の最適化 OpenAI Gymを使ってQ-learningを実装してみる 状態 行動 報酬 実装 参考文献 ディープラーニングなどの機械学習技術の進歩によって、過去のデータから学習する技術は大きく進化し、写真の中に写っている対象を認識することや病気の診断、多言語間の翻訳をする性能を著しく向上させることができました。 すでにその性能は専門的な教育を受けた人間の能力と同等 [1] か超えている分野もあるほどです。 一方で、人間にはデータを与えなくとも自ら経験から学び、スキルを上達させることができます。特に何も教えられなくとも、経験からゲームを攻略することやロボットの正しい動作の仕方を学んでいくことができます。 機械学習の中でも、こ

    これさえ読めばすぐに理解できる強化学習の導入と実践
    Nyoho
    Nyoho 2017/08/12
  • RNNでプログラミング言語の構文エラーを自動修復する衝撃

    コンパイルエラーの問題点 DeepFix Iterative Repair まとめ 参考文献 プログラミング言語のコンパイルエラーを自動で検知して修復することができたら、プログラマの作業時間を減らせる可能性があります。もしくは、テキストエディタがプログラムを書いている最中に、エラーだろうと思われる構文を見つけたときにさり気なく教えてくれたら生産性が著しく向上することも考えられます。 “Software is eating the world.“という言葉は、マーク・アンドリーセンの提唱した言葉です。まだまだ「い尽くす」ほどではないものの、徐々にその影響力は高まっていると感じます。ソフトウェアを開発する必要性が増すにつれて、ソフトウェアエンジニアも次第に求められていくことでしょう。そして、そのプログラマの仕事の大部分はデバッグに費やされます。 バグや構文エラーを自動検知するシステムがテキス

    RNNでプログラミング言語の構文エラーを自動修復する衝撃
    Nyoho
    Nyoho 2017/06/15
    すごいね。応用幅広い。
  • Word2Vec:発明した本人も驚く単語ベクトルの驚異的な力

    Word2Vecとは Word2Vecで演算処理する Word2Vecとニューラルネットワーク Word2Vecの仕組み CBoW Skip-gram Word2Vecを応用することができる分野 レコメンド 機械翻訳 Q&A・チャットボット 感情分析 Word2Vecの弱点 Word2Vecの派生系や類似ツール GloVe WordNet Doc2Vec fastText まとめ 参考 世界中のWebサイトの数は2014年に10億件を超えたようだ。そして、Facebookのユーザー数だけでも16億人を超えている。 そして、そのいずれもコンテンツの中身の大部分はテキストから成り立っていることだろう。 ということは、莫大に増大し続けるネット上のデータのほとんどはどこかの国の言葉だってことだ。世界中の人が毎日テキストデータを生成し続けたことはこれまでの歴史上無かったんじゃないだろうか。 もしそん

    Word2Vec:発明した本人も驚く単語ベクトルの驚異的な力
  • レコメンドに浸透していくDeep Learning: 大手サービスの実用例から最新アルゴリズムを概観する

    レコメンドに浸透していくDeep Learning: 大手サービスの実用例から最新アルゴリズムを概観する
    Nyoho
    Nyoho 2016/12/08
    へえ従来の機械学習による推薦システムづくりじゃなくて、深層学習が使えるようになってきているのか。
  • Facebookが公開した10億語を数分で学習するfastTextで一体何ができるのか

    fastTextとは何なのか 自然言語処理の学習を高速化するツール これまで5日かかっていたタスクがたったの10秒で終了 fastTextで取り組める3つのこと fastTextで出来る3つの全体像 Facebookはニュースフィードから釣り見出しを排除するためにfastTextをつくった? リクルートテクノロジーズでは、レコメンドに応用 サイバーエージェントが実用化したAWAでのアーティストレコメンド Yahoo!はレシートメールの文章から製品をオススメする ◯2Vecを考えれば推薦に応用できる fastTextを安全に使うために必要な理論 単語をベクトル表現化するWord2Vec ベクトル表現を構築するアーキテクチャ CBoW Skip-gram fastTextを使ってみよう fastTextをインストールする 単語のベクトル表現を構築しよう Tweetデータの収集 単語のベクトル表

    Facebookが公開した10億語を数分で学習するfastTextで一体何ができるのか
  • 1