LLMs are trained on a large but fixed corpus of data, limiting their ability to reason about private or recent information. Fine-tuning is one way to mitigate this, but is often not well-suited for facutal recall and can be costly. Retrieval augmented generation (RAG) has emerged as a popular and powerful mechanism to expand an LLM's knowledge base, using documents retrieved from an external data
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く