「StanとRでベイズ統計モデリング」の読書会発表資料です。 今回の発表は導入編(1章~3章)です。 初回ということもあって,本の内容以外に清水が補足説明を加えているところもあります。

※ここで解説しているお天気推移モデルはオリジナルなものですので、数値・計算等にミスがある可能性が否めませんので、もし間違いを見かけた方は優しく教えていただけると助かります。 お天気推移モデルで理解するマルコフ連鎖モンテカルロ法。2状態離散モデルの解説を中心に、メトロポリス法の解説まで行った。 次は連続モデルや熱浴法・メトロポリスヘイスティング法の解説資料も作成したい⇒完成。以下のLINKを参照下さい。http://www.slideshare.net/teramonagi/ss-5344006 誤字を修正(2010/11/01)
6. Data / Inform / Information Inform: “to convey knowledge via facts (事実によって知識を伝える)” Data (Factの集合) Information 選択・加工して知識を取り出す Value of Values (Rich Hickey) 業務システム構築におけるデータモデリング (和田省二) 7. Dataを場合分けする Event (コト) Resource (モノ) 日時属性をもつ 日時属性をもたない 非対称性 対称性 ある一時点 ライフサイクルがある 一時点の事実の記録なので、属性は変わる ことはない。 ライフサイクルにともない属性が変化して いくこともある。 属性が変化しても同じモノであることを示 すためIdentityが必要。 データは大まかに2種類に分別できる。
2. 徳丸浩の自己紹介 • 経歴 – 1985年 京セラ株式会社入社 – 1995年 京セラコミュニケーションシステム株式会社(KCCS)に出向・転籍 – 2008年 KCCS退職、HASHコンサルティング株式会社(現社名:EGセキュアソリューションズ株式会社)設立 • 経験したこと – 京セラ入社当時はCAD、計算幾何学、数値シミュレーションなどを担当 – その後、企業向けパッケージソフトの企画・開発・事業化を担当 – 1999年から、携帯電話向けインフラ、プラットフォームの企画・開発を担当 Webアプリケーションのセキュリティ問題に直面、研究、社内展開、寄稿などを開始 – 2004年にKCCS社内ベンチャーとしてWebアプリケーションセキュリティ事業を立ち上げ • 現在 – EGセキュアソリューションズ株式会社取締役CTO https://www.eg-secure.co.jp/ –
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to
第1回 4月8日 プログラム高速化の基礎 プログラム高速化の基礎知識、並列化プログラミング(MPI、OpenMP)の基礎知識、およびプログラム高速化の応用事例の座学を通して、計算科学で必要な高性能計算技術の基礎の習得を目指す。 https://www.r-ccs.riken.jp/outreach/schools/tokurona-2021/Read less
Sep 14, 2020Download as PPTX, PDF199 likes331,155 views 東京大学 松尾研究室が主催する深層強化学習サマースクールの講義で今井が使用した資料の公開版です. 強化学習の基礎的な概念や理論から最新の深層強化学習アルゴリズムまで解説しています.巻末には強化学習を勉強するにあたって有用な他資料への案内も載せました. 主に以下のような強化学習の概念やアルゴリズムの紹介をしています. ・マルコフ決定過程 ・ベルマン方程式 ・モデルフリー強化学習 ・モデルベース強化学習 ・TD学習 ・Q学習 ・SARSA ・適格度トレース ・関数近似 ・方策勾配法 ・方策勾配定理 ・DPG ・DDPG ・TRPO ・PPO ・SAC ・Actor-Critic ・DQN(Deep Q-Network) ・経験再生 ・Double DQN ・Prioritized E
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。 近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。 "Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise. The slides are made by the lecturer from outside our company, and shared here with his/her permission. Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステム
【第40回AIセミナー】 「説明できるAI 〜AIはブラックボックスなのか?〜」 https://www.airc.aist.go.jp/seminar_detail/seminar_040.html 【講演タイトル】 機械学習モデルの判断根拠の説明 【講演概要】 本講演では、機械学習モデルの判断根拠を提示するための説明法について紹介する。高精度な認識・識別が可能な機械学習モデルは一般に非常に複雑な構造をしており、どのような基準で判断が下されているかを人間が窺い知ることは困難である。このようなモデルのブラックボックス性を解消するために、近年様々なモデルの説明法が研究・提案されてきている。本講演ではこれら近年の代表的な説明法について紹介する。Read less
NLP コロキウム https://nlp-colloquium-jp.github.io/ で発表した際のスライドです。 論文: https://arxiv.org/abs/2205.01954 GitHub: https://github.com/joisino/wordtour 概要 単語埋め込みは現代の自然言語処理の中核技術のひとつで、文書分類や類似度測定をはじめとして、さまざまな場面で使用されていることは知っての通りです。しかし、ふつう埋め込み先は何百という高次元であり、使用する時には多くの時間やメモリを消費するうえに、高次元埋め込みを視覚的に表現できないため解釈が難しいことが問題です。そこで本研究では、【一次元】の単語埋め込みを教師なしで得る方法を提案します。とはいえ、単語のあらゆる側面を一次元で捉えるのは不可能であるので、本研究ではまず単語埋め込みが満たすべき性質を健全性と完
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く