タグ

関連タグで絞り込む (606)

タグの絞り込みを解除

Pythonとpythonに関するdelegateのブックマーク (849)

  • 【Python】MeCabと極性辞書を使ったツイートの感情分析入門 - StatsBeginner: 初学者の統計学習ノート

    負のオーラを自動検出したい 前回のエントリで、著作権侵害にあたる違法アップロード動画を自分のTwitterで拡散してしまっている懸念を考えて、YouTube動画のリンクが貼ってあるツイートをまとめて削除しました。 前回のエントリでも言いましたが、著作権侵害モノ以外にも、「残しておくとまずいツイート」は色々ある可能性があり、たとえば誹謗中傷の類いがあるかと思います。誹謗中傷ツイートを自動抽出する方法はにわかには思いつきませんが、たぶん「クソ」とか「死ね」とか「バカ」とかそういう悪口の辞書が必要になりそうです。 ところで、言語データの分析手法として、単語ごとに感情特性を評価した辞書というものがあちこちで作られていまして、これを使ってツイートがどのような感情を帯びているか分析するということが、よくやられています。Yahoo!がそういうツールを提供してたりもします(参考リンク)。 Yahoo!のリ

    【Python】MeCabと極性辞書を使ったツイートの感情分析入門 - StatsBeginner: 初学者の統計学習ノート
  • 『Pythonで体験するベイズ推論 ―PyMCによるMCMC入門―』の書評 - StatModeling Memorandum

    特長 Pythonユーザが待ちに待ったPythonによるMCMCではないでしょうか。原著タイトルが『Bayesian Methods for Hackers』だけあって、プログラマ・エンジニア向きだと思います。数式はびっくりするほど出てこない代わりに、Pythonコードは非常にたくさんでてきます。そしてPyMCの使い方が基礎から説明してあって丁寧です。自分でコーディングする際は原著のGitHubリポジトリを活用しましょう(なんとStarが10000個を超えてる!)。 Pythonで体験するベイズ推論 PyMCによるMCMC入門 作者: キャメロン・デビッドソン=ピロン,玉木徹出版社/メーカー: 森北出版発売日: 2017/04/06メディア: 単行(ソフトカバー)この商品を含むブログを見る 購入を迷っている人の一番の心配は、書のPyMCのバージョンが1つ前のPyMC2であることだと思

    『Pythonで体験するベイズ推論 ―PyMCによるMCMC入門―』の書評 - StatModeling Memorandum
  • Python: scikit-learn で主成分分析 (PCA) してみる - CUBE SUGAR CONTAINER

    主成分分析 (PCA) は、主にデータ分析や統計の世界で使われる道具の一つ。 データセットに含まれる次元が多いと、データ分析をするにせよ機械学習をするにせよ分かりにくさが増える。 そんなとき、主成分分析を使えば取り扱う必要のある次元を圧縮 (削減) できる。 ただし、ここでいう圧縮というのは非可逆なもので、いくらか失われる情報は出てくる。 今回は、そんな主成分分析を Python の scikit-learn というライブラリを使って試してみることにした。 今回使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.12.4 BuildVersion: 16E195 $ python --version Python 3.6.1 下準備 あらかじめ、今回使う Python のパッケージを pip でインストールしておく。

    Python: scikit-learn で主成分分析 (PCA) してみる - CUBE SUGAR CONTAINER
  • Client Challenge

  • Pythonの環境管理ツール良し悪し - Zopfcode

    EDIT: 2018/06/19 pipenvについて追記 記事は社内向けに書いた文章を修正したものである。 世の中にある代表的な「Python環境管理ツール」に virtualenv, pyenv, venv, pipenv の4つがある。これらをGoogleで検索すると使い方が書かれたページばかりが出てきて、それらの違いや使い分けを解説する記事は少ない。 当は必要ではないのに「pyenvは便利」のような謳い文句で何となく使わせる記事や、古い情報を元に書いた「一見新しそうに見える記事」も多く見られる。 この記事では、中立・実用重視な視点から各ツールを解説し、筆者が考えうるベター(ベストは人それぞれ)な組み合わせについて書く。 なおAnacondaは初学者が使うにはおすすめできない。Anacondaについての筆者の解釈は末尾にあるためそちらも参照されたい。 記事公開後いくつか近い話題

    Pythonの環境管理ツール良し悪し - Zopfcode
  • Python: ソケットプログラミングのアーキテクチャパターン - CUBE SUGAR CONTAINER

    今回はソケットプログラミングについて。 ソケットというのは Unix 系のシステムでネットワークを扱うとしたら、ほぼ必ずといっていいほど使われているもの。 ホスト間の通信やホスト内での IPC など、ネットワークを抽象化したインターフェースになっている。 そんな幅広く使われているソケットだけど、取り扱うときには色々なアーキテクチャパターンが考えられる。 また、比較的低レイヤーな部分なので、効率的に扱うためにはシステムコールなどの、割りと OS レベルに近い知識も必要になってくる。 ここらへんの話は、体系的に語られているドキュメントが少ないし、あっても鈍器のようなだったりする。 そこで、今回はそれらについてざっくりと見ていくことにした。 尚、今回はプログラミング言語として Python を使うけど、何もこれは特定の言語に限った話ではない。 どんな言語を使うにしても、あるいは表面上は抽象化さ

    Python: ソケットプログラミングのアーキテクチャパターン - CUBE SUGAR CONTAINER
  • 忘れがちな&間違えがちなPythonデフォルト機能メモ - MyEnigma

    エキスパートPythonプログラミング 改訂2版 (アスキードワンゴ)posted with カエレバMichal Jaworski,Tarek Ziade,稲田 直哉,芝田 将,渋川 よしき,清水川 貴之,森 哲也 ドワンゴ 2018-02-26 Amazonで探す楽天市場で探すYahooショッピングで探す 目次 目次 はじめに printの表示フォーマット __str__ メソッド クラス変数 パッケージの下のモジュールのインポート 集合型(Set)の使い方 ジェネレータ リスト内包表記でfilter 複数代入 その他便利機能 参考資料 MyEnigma Supporters はじめに いつも忘れて、ググったり、 長い間上手く使えていなかった Pythonのデフォルト機能をメモとしてまとめておきます。 これらの機能は主に下記の資料を元に勉強しました。 Python 3入門 (全31回

    忘れがちな&間違えがちなPythonデフォルト機能メモ - MyEnigma
  • Python: concurrent.futures を使った並行・並列処理 - CUBE SUGAR CONTAINER

    Python の concurrent.futures はバージョン 3.2 で追加された並行・並列処理用のパッケージ。 似たようなパッケージにはこれまでにも threading や multiprocessing があったんだけど、これはそれよりも高レベルの API になっている。 デフォルトでスレッド・プロセスプールが使えたり、マルチスレッドとマルチプロセスがほとんどコードを変えずに使い分けられるメリットがある。 下準備 使う Python のバージョンが 3.2 未満のときは PyPI にあるバックポート版のパッケージをインストールする必要がある。 $ pip install futures ただし、今回使う環境は Python 3.5 なので関係ない。 $ python --version Python 3.5.1 $ sw_vers ProductName: Mac OS X P

    Python: concurrent.futures を使った並行・並列処理 - CUBE SUGAR CONTAINER
  • データ分析初心者向け、Pythonでデータ取得&グラフ描画する方法 -

    秋山です。 サービスを運営していると、いろいろなデータから必要な情報だけを取得して分析するような機会もたくさんあるかと思います。 分析に使えるツールは世の中にたくさんあるので、どれが使いやすいかは人それぞれですが、今回は「分析を始めたばかりで何をどうすればいいのかわからない…!」という方のために、Pythonを使って初心者向けのデータ分析のやり方を紹介します。 ■使用する環境 paizaでは、Pythonを使ってスキルチェック問題の回答データや、ユーザーの情報等の分析をしています。(R言語を使っていたときもありましたが、私がPythonのライブラリにある便利機能を使いたかったのと、R言語があまり得意ではなかったので移行しました) 今回は、Python3がインストール済みの環境を想定しています。これから出てくるコードもPython3を推奨しています。 下記のライブラリを使用します。 Jupy

    データ分析初心者向け、Pythonでデータ取得&グラフ描画する方法 -
  • Python: Keras/TensorFlow の学習を GPU で高速化する (Mac OS X) - CUBE SUGAR CONTAINER

    Keras というのは Python を使ってニューラルネットワークを組むためのフレームワーク。 Python でニューラルネットワークのフレームワークというと、他にも TensorFlow とか Chainer なんかが有名どころ。 Keras はそれらに比べると、より高い抽象度の API を提供しているところが特徴みたい。 実のところ Keras はデフォルトで TensorFlow をバックエンドとして動作する。 バックエンドとしては、他にも Theano が選べるらしい。 今回は Keras で組んだニューラルネットワークを GPU で学習させてみることにした。 そのとき CPU と比べて、どれくらい速くなるかを試してみたい。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.12.3 BuildVersi

    Python: Keras/TensorFlow の学習を GPU で高速化する (Mac OS X) - CUBE SUGAR CONTAINER
  • Theanoの使い方 (1) シンボルと共有変数 - 人工知能に関する断創録

    今回からしばらくの間、Deep Learningの各種アルゴリズムをスクラッチから実装していきたい。Pylearn2などDeep Learningのアルゴリズムを実装したPythonライブラリもあるのでスクラッチから実装する意味はほとんどないのだけれど、今回はアルゴリズムの詳細を勉強するというのが趣旨。 参考にした資料はDeep Learning Tutorial。TheanoというPythonの数値計算ライブラリを用いたDeep Learningの各種アルゴリズムの実装方法がソースコード付きで解説されている。ぶっちゃけたところこの資料を読み込めばこんな記事はいらないのだけれど、実装する過程で試行錯誤しないと理解できないところが多々あったのでそういうところをまとめておきたい。 今回はTheanoの基的なところから。いろいろTIPSがあるので断片的に記事を書くかも・・・ Theanoについ

    Theanoの使い方 (1) シンボルと共有変数 - 人工知能に関する断創録
  • 金融データのPythonでの扱い方 - 今日も窓辺でプログラム

    はじめに Udacityというネット上のビデオを視聴する形で受講できる講義を提供しているサイトがあります。 Learn the Latest Tech Skills; Advance Your Career | Udacity サイトや講義は英語なのですが、その中で Machine Learning for Tradingという講義を見つけました。 この講義は主に3つのパートに分かれています 金融データをPythonで操作する コンピュータを使った投資 取引に使う機械学習アルゴリズム 1つ目のパートを視聴したので、Pythonの基的な知識の部分で知らなかった点を、実際のデータを操作する中で紹介しようと思います。 2つ目と3つ目はまた後日にでも。。 目次 はじめに 目次 今回使用するデータとJupyter Notebook データの読み込み 移動平均の計算 pandasのrollingを使

    金融データのPythonでの扱い方 - 今日も窓辺でプログラム
  • Pythonをやるときに参考になりそうな情報 - のんびりSEの議事録

    最近あんまり触っていなかったので、久々にPythonをやろうと思ったときにいろいろ忘れてたり、新しく知ったりしたこともあったので、Pythonやるときに参考になりそうな情報をまとめました (但し、今回はデータ分析系のライブラリ関連は除いています) Pythonの言語仕様や基等 概要 — Python 3.5.2 ドキュメントdocs.python.jp qiita.com www.python-izm.com 2系と3系の違い postd.cc qiita.com コーディング規約 はじめに — pep8-ja 1.0 ドキュメント ドキュメント生成 azunobu.hatenablog.com ドックストリング """ 3重ダブルクォートを使用して記載する。 ドックストリングに記述したテキストは関数やクラスオブジェクトの__doc__に保存される def hello(): """Out

    Pythonをやるときに参考になりそうな情報 - のんびりSEの議事録
  • Python Jupyter notebookでpandasを使いCSVを読み込みグラフを描画してpdfなどで保存する方法

    ここから特定の行(列)だけを抜き出してグラフにします。それで簡単な説明はあとでするとして、忘れないようにコードを書いておくことにします。 %matplotlib inline import numpy as np import matplotlib.pyplot as plt import pandas as pd import os df = pd.read_csv("/Users/yourname/Desktop/book.csv", encoding="UTF-8") plt.figure(figsize=(8, 6.5)) plt.rcParams["font.size"] = 22 plt.rcParams["xtick.labelsize"] = 12 plt.rcParams["ytick.labelsize"] = 15 plt.rcParams["legend.fonts

    Python Jupyter notebookでpandasを使いCSVを読み込みグラフを描画してpdfなどで保存する方法
  • APScheduler - Pythonと機械学習

    目次 目次 はじめに Poloniexサーバー時間 使用例 Linuxでバックグラウンド実行 はじめに Poloniexからチャートデータを取ってきて明日のコイン価格を予想することができ、またAPIを使って成行トレードもできるようになったので、後はそれらをまとめて実行するスクリプトをスケジュラーに登録すれば自動トレードbotが出来上がります。 はじめはLinuxcronに登録しようと思いましたが、Poloniexのサーバーと時差があるためタイムゾーンが指定できるAPSchedulerを使うことにしました。 APSchedulerは普通にpipでインストールできます。 pip install -U apscheduler Poloniexサーバー時間 Poloniexサーバーの所在地は日との時差16時間のロサンゼルスですが、サーバー時間はUTC(協定世界時。日との時差9時間)に設定され

    APScheduler - Pythonと機械学習
  • wheelのありがたさとAnacondaへの要望 - YAMAGUCHI::weblog

    はじめに こんにちは、Python界のラファエル・ナダルです。全豪オープンテニス、盛り上がりましたね。さて、先日次のようなエントリーを立て続けに書いたんですが、「なぜAnacondaに関しての記述がないのか」という突っ込みをもらったので、参照用にメモを残しておきます。 Pythonの仮想環境構築 2017.01版 - YAMAGUCHI::weblog Pythonの環境設定でむかついてる人はとりあえずこれをコピペで実行してください 2017.01 - YAMAGUCHI::weblog なおこの記事の作成にあたっては @aodag に数多くのアドバイスをいただきました。この場を借りて感謝。 TL;DR condaの開発者はPyPAともっとコミュニケーションとってほしい。 前提 この記事はPythonを触り始めたばかりだけど、パッケージ管理ツール等々のスタンダードがどのようになっているかな

    wheelのありがたさとAnacondaへの要望 - YAMAGUCHI::weblog
  • さくっとトレンド抽出: Pythonのstatsmodelsで時系列分析入門 - Gunosyデータ分析ブログ

    久しぶりの投稿になってしまいましたが、ニュースパス(現在CM放映中!!)開発部の大曽根です。 作業中はGrover Washington Jr のWinelightを聴くと元気が出ます。参加ミュージシャンが素晴らしいですね。 なぜ時系列分析をするのか 季節調整 実演 おまけ: 時間別に見てみる まとめ 今後 なぜ時系列分析をするのか 数値を非常に重視している弊社では、数値を知るためのツールとしてRedashやChartioおよびSlackへの通知を活用しています。現在の数値を理解する上では、長期のトレンド(指標が下がっているのか、上がっているのか)を知ることが重要です。しかし、日々変化するデータ(特に売上やKPIと言われる指標)は、ばらつきも大きく、変化を適切に捉えることが難しいこともあります。 特にSlackなどへの通知を行っていると、日々の変化に囚われがちです。例えば、弊社ではニュース

    さくっとトレンド抽出: Pythonのstatsmodelsで時系列分析入門 - Gunosyデータ分析ブログ
  • Pythonの環境設定でむかついてる人はとりあえずこれをコピペで実行してください 2017.01 - YAMAGUCHI::weblog

    はじめに こんにちは、最近Pythonをまた書き始めたマンです。なんか古い記事が参照されててだいぶ害があるので現状にあったやつにします。 Pythonの環境設定でむかついてる人はとりあえずこれをコピペで実行してください - YAMAGUCHI::weblog 要点 これからPythonを使い始める人、という前提に立っているので今更Python2系を使い始める意味はない。*1ということでPython3系(現時点最新安定版のPython3.6.0)を使いましょう。 標準を使うのがよい(venv + pip) 自分がよく分かってないツールは使わないほうがいい Python2系を使う人は、上にリンクしてある記事にあるとおりなんですが、Python2.7を使うのであれば pip + virtualenv 一択だと思います。やり方は下にある内容と変わりません。 以下コピペ macOS Homebrew

    Pythonの環境設定でむかついてる人はとりあえずこれをコピペで実行してください 2017.01 - YAMAGUCHI::weblog
  • 機械学習でも定番のPythonライブラリ「NumPy」の初心者向け使い方チュートリアル - paiza times

    秋山です。 私は主にPythonを使って開発をしているので、以前Pythonの便利なライブラリやフレームワークを紹介する記事を書いたのですが(後でリンク貼りますね)、今回はその記事でも紹介したNumPy(なむぱいと読みます)という数値計算用ライブラリの使い方チュートリアルを書きたいと思います。 NumPyは機械学習やディープラーニングなどを学ぶ上でも前提知識とされることが多いため、これからその辺の分野の勉強をしてみたい人の参考になればと思います。 チュートリアルの実行環境は、ブラウザだけでPythonもNumPyも使えるオンラインのプログラミング実行環境「paiza.IO (パイザ・アイオー)」を使っていきます。 ■NumPyにおける配列 NumPyにおける配列は"ndarray"という形式になっていて、このndarrayはいろいろな機能を持っています。 まず、普通のリストをndarray

    機械学習でも定番のPythonライブラリ「NumPy」の初心者向け使い方チュートリアル - paiza times
  • 最近の Python-dev (2017-01) : DSAS開発者の部屋

    @methane です。 compact dict が Python 3.6 が9月(ベータになる直前)にマージされ、それのおかげで推薦をもらい 10月ごろから Python の Core Developer になりました。 「PythonのフルタイムコミッタとしてKLabに雇われている」という訳ではないのですが、 もともと自己裁量で業務時間の大半をOSSへの貢献やコードを読むことに費やし、特にこの3ヶ月位は Python ばかり触っていたので、実質的には近い状態です。 そちらでの活動をあまり日で共有する機会がないので、 Money Forward の卜部さんが書かれている 最近の ruby-core という記事をリスペクトして、 最近の Python の開発状況を紹介する記事を書いてみたいと思います。 Python 3.6 リリース 12/23 に Python 3.6 がリリースされ

    最近の Python-dev (2017-01) : DSAS開発者の部屋