3日で作る高速特定物体認識システム (6) 線形探索を用いた特定物体認識(2009/11/22)のつづきです。今回がこのシリーズの最終回です。 前回の線形探索は遅すぎるので最近傍探索を高速化します。これで表題の高速特定物体認識システムができあがります。高速化にはいくつかの方法がありますが、物体モデルデータベースをなんらかのデータ構造にあらかじめ格納しておくというのがポイントです。今回は、資料でも述べられているkd-treeとLocality Sensitive Hashing (LSH)という手法を試してみます。kd-treeは木構造、LSHはハッシュでデータを構造化(インデキシング)します。kd-treeは、厳密な最近傍を求めますが、LSHは近似最近傍検索と呼ばれ、厳密な最近傍は求められない代わりに計算を大幅に高速化できます。 資料では、ANN (Approximate Nearest