エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
多層パーセプトロンを1から作ってみた - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
多層パーセプトロンを1から作ってみた - Qiita
この記事は,Pythonそのものの使い方かDeepLearningの仕組みまで,1から細かく学習した際のメモ書きとス... この記事は,Pythonそのものの使い方かDeepLearningの仕組みまで,1から細かく学習した際のメモ書きとスライドのまとめです. 多層パーセプトロン(AND真偽値表の学習) 今回は,多層パーセプトロン(Perceptron)を用いて,AND真偽値表の出力を学習させることを目指す.AND真偽値表とは,入力の2つが共に1である時のみ1を出力するものである. このAND真偽値表は,前回の1から学ぶDeepLearning (1) で扱ったように,単純パーセプトロンで学習ができたものであった. 今回は,多層パーセプトロンを学習することを第一の目的として,内容の同じ学習を行い,単純パーセプトロンとの違いを見てみることにする. import numpy as np # 活性化関数の定義(Sigmoid関数) def sigmoid(x): return 1/(1+np.exp(-x)) def