エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
【お勉強してみた】RANSACのおはなし - Qiita
三行で 自然界のデータにはたくさんノイズがある ノイズがあると、法則性をうまく見つけられないことが... 三行で 自然界のデータにはたくさんノイズがある ノイズがあると、法則性をうまく見つけられないことがある そんなノイズをうまく無視するのがRANSAC こんにちは。今日は大学院でやっているの情報学に関するネタをお送りします。 先日ふと、「そういえばちゃんと勉強したことがなかったなぁ」と思い立ったので、RANSACを勉強 & 実装してみました。 RANSACとは 大学院の研究で画像などの自然界のデータをとっていると、ノイズなどの原因で法則性から大きく外れて現れた「外れ値」がデータ中に含まれることがあります。外れ値は、データから法則性を見出す時に邪魔をします。そんな時に、外れ値をうまく無視して法則性(パラメータ)を推定をする手法がRANSACです。 ...なんて概念の話では分かりにくいので、具体例を見てみましょう。以下、法則性を「モデル」と読み替えます。 直線のモデル推定 与えられた点群から、そ
2019/11/07 リンク