ラグランジュ関数は以下のような形をした制約付き最適化問題を解くために導入される有名な手法です. $\min_{x \in D} f_0(x),$ $\mbox{subject to}$ $f_i(x) \le 0$ $(i=1,2,...,m)$ $h_i(x) = 0$ $(i=1,2,...,p)$ ここで,$D \subseteq \mathbb{R}^n$ は目的関数の定義域で, $f_0,f_1,\cdots,f_m, h_1, \cdots, h_p: D \rightarrow \mathbb{R}$ は任意の関数. この記事では "Convex Optimization" (by Boyd and Vandenberghe) の5章 "Duality" の項を元に,ラグランジュ関数とその背後にある理論について記します.主に記したことは以下のとおりです. ラグランジュ関数の定