タグ

2018年10月22日のブックマーク (2件)

  • 深層学習を勉強してリアルタイム映像表現に使ってみた話

    深層学習を勉強してみたいと思った 動機は2つあって、単純に深層学習流行ってるからやってみたかった、というのと、今後グラフィックス技術を扱っていく際に深層学習は欠かせないものになりそうだと考えた、というのがありました。 例えば、最近 NVIDIA は深層学習を応用したノイズ軽減技術によってモンテカルロ系レンダラーのレンダリング時間を大幅に削減できるとしています。また、Turing 世代の GPU では深層学習を応用した超解像技術によって高解像度動作時のパフォーマンスを大幅に改善できるとしています。ただ僕には、これらの技術がどれほど効果的なものなのか、また当に実用的なものなのか、判断することができませんでした。 このような深層学習技術の応用は今後様々な場面で進められていくことと思われますが、そういった技術を評価していくにあたって深層学習の基礎知識を備えておくことが必要になると感じています。

    深層学習を勉強してリアルタイム映像表現に使ってみた話
  • 簡潔ビットベクトルでRubyをlog N倍速くした - クックパッド開発者ブログ

    技術部のフルタイムRubyコミッタの遠藤(@mametter)です。昨日の Hackarade #04 の開催報告に続き、2日連続で記事を投稿します。 今回は、ある条件下でのRubyの実行速度を高速化した話を紹介します。この改善はすでにMRIの先端にコミットされていて*1、年末リリース予定のRuby 2.6に含まれる予定です。 ひとことで言うと、「簡潔ビットベクトルを索引に使うことで、プログラムカウンタから行番号を計算するアルゴリズムをO(log N)からO(1)に改善した。これにより、TracePoint有効時やコードカバレッジ測定下で、長さ N のメソッドの実行が O(N log N) から O(N) に高速化される」ということです。順に説明します。 背景:Rubyのバイトコードの構造 この最適化を理解するにはまず、Rubyのバイトコードのある特徴を知る必要があります。 たとえば x

    簡潔ビットベクトルでRubyをlog N倍速くした - クックパッド開発者ブログ