本セッションではPC/スマートフォン向けゲーム『ガールフレンド(仮)』のデータベースの負債とその解消の道のりをご紹介します。 当ゲームではデータベースにMySQLを採用しており、長年の運用を続けていく中で下記のような課題が発生してきました。 「突発的なユーザー増加で更新負荷に耐えられない」 「デー…

大きく変化した「人とシステム」の関係 企業におけるDX(デジタルトランスフォーメーション)の取り組みが加速する中で、「マイクロサービスアーキテクチャ」(以下、マイクロサービス)の注目度が増している。マイクロサービスは、複数の小さなサービスを組み合わせて一つのシステムを構成するという考え方だ。 マイクロサービスのような「疎結合アーキテクチャ」自体は以前からあるが、「クラウド」「モバイル」といった技術や考え方が普及したことで最近特に注目されている。こう語るのは、Scalarの深津 航氏(CEO、COO<最高執行責任者>)だ。 「技術の進歩によって人とシステムの関係が大きく変化した2000年ごろは、社内の情報は社内のシステムに格納され、他社と情報をやりとりするのは主に“人”だった。しかし、2010年ごろになると企業と企業のやりとりも、メールや電話だけでなく、スマートフォンのアプリケーションやWe
「最近は、データベースもB/Gデプロイできるらしいよ?」 「そりゃそうやろ。B/Gデプロイなんて、最近当たり前……… へ?DBが?無理でしょ?ほぇ?どういうこと?」 最初アップデートのタイトルを見たときの、ハマコーの率直な感想です。 Blue/Greenデプロイは、現行バージョンのトラフィックを活かしたまま新バージョンを動作確認し、問題なければ新バージョンをリリースするという、最近の安全なデプロイの概念において無くてはならないものです。 同時に新旧バージョンを稼働させるため、基本的にはステートレスなアプリケーション・サーバーにおいて利用するものという固定概念があったのですが、それをデータベースに対して既存のAWSの技術を組み合わせつつAWSらしいマネージドな仕組みで解決しようという、意欲的なリリースです。制約事項もそれなりにあるので、皆さんの運用ワークロードに当てはまるかは、事前の検証が必
あなたが知らない既存機能があるかもしれません! マイクロソフト社は2006年、Microsoft Officeの新バージョンで追加してほしい機能について、顧客調査を実施しました。驚いたことに、ユーザが希望した機能の90%以上はすでに実装されており、その存在が知られていないだけであることが判明しました。機能の「見つけにくさ」の問題の解決策として同社が考案したのが、現在のMicrosoft Office製品でおなじみの「リボンUI」です。 この問題はOfficeに限ったものではありません。日々使用するツールの機能をすべて把握している人はほとんどいません。PostgreSQLのように大規模なツールであればなおさらです。数週間前にPostgreSQL 14がリリースされたばかりなので、この機会にPostgreSQLのあまり知られていない機能に注目してみたいと思います。 この記事では、Postgre
前提 前提ですが。 transaction=Consistency/Isolationを担保する仕組みの話とする。 一般にtransactionが持つべき属性はACIDと言われる。C/Iに比べて、A/Dが“わかりやすい”のでAtomic/Durableの属性の方が人口に膾炙しているが、現在のtransactionではA/Dネタはあまり話題にならない。A/Dネタはローカルだけで見るのであれば普通にfile system /storageの話になる。元来Atomic/Durableはtransactionのコンテクストでは専らlogging / recoveryの話だった。そして、これは非同期のepoch-basedになるとそれ自体の取り扱い優先度が下がる。現代的なtransactionでは、「現時点ではread committedが保証されているFS/storageでA/Dの問題は(ある程度
GoogleはGoogle Cloudで提供している大規模分散データベース「Cloud Spanner」に、PostgreSQL互換のインターフェイスを実装したと発表しました。 At #GoogleCloudNext, we've announced the preview of Cloud Spanner’s PostgreSQL interface—combining the scalability & reliability of Spanner that enterprises trust with the familiarity & portability of PostgreSQL that dev teams . Take a deeper dive ↓ https://t.co/Y3xD1lDPLg — Google Cloud Tech (@GoogleCloudTech
Intro DBML (Database Markup Language) is an open-source DSL language designed to define and document database schemas and structures. It is designed to be simple, consistent and highly-readable. It also comes with command-line tool and open-source module to help you convert between DBML and SQL. Table users { id integer username varchar role varchar created_at timestamp } Table posts { id integer
話したネタ 論理削除とはそもそも何か? 物理削除とは? なぜ、論理削除が生まれてくるのか? SQLアンチパターン 幻の第26章「とりあえず削除フラグ」 理由1: 心理的なハードルの高さ、怖さがある 理由2: 削除したデータを検索対象に入れたい場合がある 理由3: ログとしての用途 理由4: 誤操作をすぐに戻したい アンチパターンとは何か? なぜ、論理削除はアンチパターンとして捉えられるのか? 全てのSQL文のWHERE句に削除フラグが必ず入る LIMIT 1などが蔓延していく 論理削除に気づくきっかけは何か? テーブル設計や、規約から気づく 論理削除というアンチパターンをどのように解いていくか? 論理削除という概念は世の中にまずなく、お客様は論理削除という言葉を使っていない 要件をどのように設計すればいいのか? ORMの論理削除プラグインはあまり良くない 状態遷移として捉える方法 Soft
米アマゾン・ドット・コム(Amazon.com)がついに米オラクル(Oracle)に「勝利宣言」をした。アマゾンは2019年10月15日(米国時間)、社内からOracle Database(DB)を「全廃」したと発表したのだ。最盛期には約7500ものOracle DBが存在し、eコマースや物流、決済、受発注、広告、動画・音楽配信などのバックエンドで長年使われてきた。それらはほぼすべて姿を消したという。 Oracle DBからの移行先は、アマゾンがクラウドサービスAmazon Web Services(AWS)で提供するDBサービスだ。今後はMySQLやPostgreSQLと互換性のある分散型リレーショナルDB(RDB)サービスのAmazon Auroraをはじめ、NoSQLのDBサービスであるAmazon DynamoDB、データウエアハウス(DWH)のサービスであるAmazon Reds
Amazon Aurora Multi-Master is now generally available, allowing you to create multiple read-write instances of your Aurora database across multiple Availability Zones, which enables uptime-sensitive applications to achieve continuous write availability through instance failure. In the event of instance or Availability Zone failures, Aurora Multi-Master enables the Aurora database to maintain read
はじめに Amazon Auroraは、AWSを触る人ならほとんどの人が利用を検討したことがあるでしょう。 Amazon社内ではOracleを止めたというtweetもありました SHUTDOWN ABORT the last Oracle database running Amazon Fulfillment! pic.twitter.com/DorqTua2Lt— John Darrow (@jdarrow) 2019年3月29日 そんなAuroraは、従来のRDBとは違いクラウド上で動くことを念頭に設計されています。 また、ログが中心的な役割を持つことから「The log is the database」と表現されることもあります。 そんなAuroraの仕組みについての論文を読んだので紹介します。 読んだ論文は以下の2つです。 Amazon Aurora: Design Conside
「ユーザー目線」のシステムを目指して RDBが従来の階層型DBに比べて優れていた点はいくつか挙げることができますが、シェアを伸ばすうえで最も大きな影響は、ユーザーが使いやすいデータ構造とインタフェースにこだわったことです。すなわち、「テーブル」と「SQL」の発明です。 RDBでは、すべてのデータを「テーブル」というただ一つのデータ形式によって表現します。テーブルは、見た目が「二次元表」に似ているため*3、Microsoft ExcelやGoogle ドキュメントなどのスプレッドシートを使い慣れた人が見ると、データを格納する方法が直観的にイメージしやすいという利点があります。実際、こうした二次元表によるデータ管理は、Excelなどのソフトウェアが登場する前から一般的な方法だったため、RDBが登場した当時の人々にとっても受け入れやすいものでした。 テーブルが画期的だった点は、もう一つあります。
By 禁书 网 日本時間で2018年7月16日の正午に始まったAmazonプライムデー2018では、セール開始直後にサーバーがダウンして約1時間にわたってアクセス障害が発生しました。Amazonが内部調査を行って作成した報告書によると、この問題は取引のデータベース(DB)を従来のOracle製から自社製に乗り換えたことが最大の理由である可能性が高まっています。 Amazon move off Oracle caused Prime Day outage in warehouse https://www.cnbc.com/2018/10/23/amazon-move-off-oracle-caused-prime-day-outage-in-warehouse.html Amazonプライムデー2018は同社にとって「史上最高」となるセールス記録を樹立しました。Amazonは売上高を公表しな
平素よりQA@ITをご利用いただき、誠にありがとうございます。 QA@ITは「質問や回答を『共有』し『編集』していくことでベストなQAを蓄積できる、ITエンジニアのための問題解決コミュニティー」として約7年間運営をしてきました。これまでサービスを続けることができたのは、QA@ITのコンセプトに共感をいただき、適切な質問や回答をお寄せいただいた皆さまのご支援があったからこそと考えております。重ねて御礼申し上げます。 しかしながら、エンジニアの情報入手方法の多様化やQAサービス市場の状況、@ITの今後のメディア運営方針などを検討した結果、2020年2月28日(金)15:00をもちましてQA@ITのサービスを終了することにしました。 これまでご利用をいただきました皆さまには残念なお知らせとなり、誠に心苦しく思っております。何とぞ、ご理解をいただけますと幸いです。 QA@ITの7年間で皆さまの知識
SSD専用に設計された「ReThinkDB」、ロックもログも使わない新しいリレーショナルデータベースのアーキテクチャ SSDがHDDに代わるストレージとして普及しようとしていることを背景に、SSDに特化したまったく新しいアーキテクチャを備えたリレーショナルデータベースを開発しようとしている企業があります。「ReThinkDB」です。 昨年7月に、PublickeyではReThinkDBの概要を記事「SSDに最適化したデータベース「RethinkDB」、ロックもログも使わずにトランザクション実現」で伝えました。 その記事の中では、ReThinkDBがロックを使わずにトランザクションを実現し、データベース利用中でもスナップショットがとれ、また異常終了しても容易に復帰できる機能を備えている、といったことを紹介しました。 4月に米サンタクララでに行われた「MySQL Conference & Ex
リレーショナルデータベースを利用する際には、高い性能を引き出すために物理設計をし、スキーマを工夫し、パラメータのチューニングを行うことがつねに行われてきました。 性能のボトルネックはたいがいHDDにあり、いかにそのボトルネックを回避するかがチューニングのポイントですが、最近では性能向上のための武器として、HDDよりもずっとアクセス性能の高いSSDが注目されています。SSDはHDDと置き換えるだけで、アプリケーションにまったく手を加えずに性能向上を可能にする手段として非常に魅力的です。 HDDの代わりにSSDを利用したら、リレーショナルデータベースの性能はどれだけ向上するのでしょうか? オラクルと富士通が共同検証を行い、その結果をホワイトペーパーとして先週発表しました(参考「日本オラクルと富士通 フラッシュ技術活用によるデータベース高速化を共同検証」)。 ホワイトペーパーでは、HDDの代わり
NoSQLミドルウェアの特徴をもう少し細かく挙げてみます。分量の都合もあり個別には触れませんが、それぞれのNoSQLミドルウェアで差別化部分に関してはかなり詳細に説明がされていますので、ぜひそちらを参照してみてください。 高速に動作する リレーションモデルではないデータモデル スケールアウト型アーキテクチャ コモディティサーバによって構築される スキーマフリー SPOF(単一故障点)を持たない 自動的に複数台へレプリケーションする イベンチュアルコンシステンシまたは一貫性の選択が可能 SQLのような強力なクエリ言語を持たず、シンプルな問い合わせしかできない Cassandraとは何か NoSQLミドルウェアの筆頭といえばGoogle BigTableやAmazon Dynamoですが、オープンソースの世界でもいろいろなものが出てきています。その中でも最近特に注目を集めているのが、Apach
Song of Cloudで送金のトランザクション処理パターンが紹介されていました。 http://songofcloud.gluegent.com/2009/11/blog-post_18.html 同様のpython版がこちら Distributed Transactions on App Engine - Nick's Blog 上記のやり方で基本的には問題はないのですが、バージョン管理による楽観的排他制御を行っていないので、送金だけを考えるなら、残高を差分で更新しているので大丈夫ですが、これを一般的なパターンに拡張しようとすると、楽観的排他制御は必要になります。 楽観的排他制御とは、エンティティにバージョン番号を持たせておいて、メモリ読み込んだときのバージョン番号と書き込むときのバージョン番号が等しいことを確認する方法で、RDBMSの場合は、次のようなSQLを実行することで実現しま
App Engineで現実的な送金処理について考え中です。 ドラフト版なので、怪しい点があればご指摘いただければ幸いです。 コメントで情報いただきました。 Distributed Transactions on App Engineで紹介されてる方法と基本的に同じなので、おそらく問題なく動きそうです。ありがとうございました。 今回はこんな図を使います。 この図の読み方は、矢印の方向にユースケースの一連の処理(またはリクエストの処理)が流れていて、右に行くほど時間が経過しています。そして、矢印がくし刺しにしている四角形は、そのユースケース中で操作するエンティティを表しています。 また、左右の位置が同じ矢印は、基本的には同じ時刻に発生したイベントを表しています。上記の図では、A, B, Cがそれぞれの口座エンティティを同時に操作している感じです。 並行性制御(おさらい) 最初の図のように、それ
素朴なBigtable、できること できないこと:分散Key-Valueストアの本命「Bigtable」(2)(1/2 ページ) RDBとは別の、クラウド時代のデータベースとして注目を浴びている「分散Key-Valueストア」。その本命ともいえる、Googleの数々のサービスの基盤技術「Bigtable」について徹底解説 あまりにもRDBとは異質な「Bigtable」 前回の「もう1つの、DBのかたち、分散Key-Valueストアとは」では、連載第1回目として、クラウドコンピューティングにおける新しい潮流である「リレーショナルデータベース(RDB)から分散Key-Valueストア(分散KVS)への移行」が、どのようなパラダイムシフトをもたらすのかを解説しました。今回からは、グーグルが運用する代表的な分散KVS「Bigtable」の内部構造を紹介し、クラウドの本質をより深く掘り下げます。 前
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く