AIの開発に欠かせない機械学習には、GPUやNPU、TPUなどの処理チップが用いられていますが、それぞれの違いは分かりにくいものです。そんなCPUやGPU、NPU、TPUの違いをGoogleやクラウドストレージサービスを展開するBackblazeがまとめています。 AI 101: GPU vs. TPU vs. NPU https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/ Cloud TPU の概要 | Google Cloud https://cloud.google.com/tpu/docs/intro-to-tpu?hl=ja ◆CPUとは? CPUは「Central Processing Unit」の略称で、PCでの文書作成やロケットの進路計算、銀行の取引処理など多様な用途に用いられています。CPUでも機械学習を行うこ
前置き 個人マシンで3090 Tiが使えるようになり、ウキウキでEfficientNetV2を回してみると…共有マシンの3090よりも遅い。 どうやらWindowsではパフォーマンスが出ないというウワサは本当だったらしい。(他の要素も検証しろ! 「Windowsが許されるのは小学生までだよねー」などとイジられながらも頑なにWindowsで粘ってきたが そろそろ潮時だろうかと考えていると、CUDA on WSL 2がnear-nativeなパフォーマンスで動くと聞こえてきた。 結果、WSL 2+Docker環境で学習を回すと、Windowsネイティブ環境と比べて実行時間が16%短縮された。 導入方法 以下のページで丁寧に解説されています。 補足: CUDAをDockerから使う場合は「3. CUDA Support for WSL 2」の手順は不要です。 罠1 systemctlが使えないと
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く