タグ

algebraに関するnabinnoのブックマーク (18)

  • 線形代数とは?初心者にもわかりやすい解説 | HEADBOOST

    「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと

    線形代数とは?初心者にもわかりやすい解説 | HEADBOOST
  • Basic Linear Algebra Subprograms - Wikipedia

    Basic Linear Algebra Subprograms(BLAS)は数値線形代数の基礎的演算に必要な関数を定義するAPIである[3]。ベクトル・行列演算を含む38の関数からなるLevel 1 BLASが1979年に発表されたのち[4]、Level 2 および Level 3 まで拡張された。多数の実装が作成・整備され続けており、この分野におけるデファクトスタンダードとなっている。BLASの基礎演算を利用してLAPACKなどの上位パッケージが構築されており、科学技術計算・高性能計算で多用される。 BLASの関数を多用するソフトウェアにおいてBLAS実装(ライブラリ)の質は速度に直結する。高度な最適化は実装が動くハードウェアに依存するため、多くのハードウェアベンダーが自社デバイスに特化したライブラリを提供している(インテル:Intel oneAPI Math Kernel Libra

  • 二項式 - Wikipedia

    数学における二項多項式あるいは二項式(にこうしき、英: bi­nomial)は、二つの項(各項はつまり単項式)の和となっている多項式をいう[1]。二項式は単項式に次いで最も簡単な種類の多項式である。 定義[編集] 二項式は二つの単項式の和となっている多項式をいうのだから、ひとつの不定元(あるいは変数)x に関する二項式(一元二項式あるいは一変数(英語版)二項式)は、適当な定数 a, b および相異なる自然数 m, n を用いて の形に書くことができる。ローラン多項式を考えている文脈では、ローラン二項式(あるいは単に二項式)は、形の上では先ほどの式と同じだが、冪指数 m, n が負の整数となることが許されるようなものとして定義される。 より一般に、多変数の二項式は の形に書くことができる[2]。例えば などが二項式である。 単純な二項式に対する演算[編集] 二項式 x2 − y2 は二つの

  • Go + Gonum を使った行列計算まとめ - Qiita

    こんにちは!!Goを愛する皆様におかれましてはビッグデータ解析やニューラルネットワークの実装をGoでやりたいですよね!!そうすると嫌が応にも行列の計算が発生します。そこで今回は Go での行列計算をまとめました。 gonum/mat Go で 行列を扱う際には gonum パッケージが鉄板でしょう。gonum は行列だけでなく数値および科学的アルゴリズムの作成を支援するパッケージです。数値計算はこのパッケージに頼りましょう。 ちなみにこのリンク画像は自作サービスで自動生成しています。よかったら使ってみてください! https://qiita.com/po3rin/items/eac851304cf058c532af 行列の基 行列の作り方と内部構造を知る まずは行列の作り方から package main import ( "fmt" "gonum.org/v1/gonum/mat" )

    Go + Gonum を使った行列計算まとめ - Qiita
  • General algebraic modeling system - Wikipedia

  • ド・モルガンの法則 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ド・モルガンの法則" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年6月) ド・モルガンの法則のベン図による表現。図1、図2のそれぞれの場合において、等式の両辺の集合は青い領域で図示される。 ド・モルガンの法則(ド・モルガンのほうそく、英: De Morgan's laws)は、ブール論理や集合の代数学において、論理和と論理積と否定(集合のことばでは、和集合と共通部分と差集合)の間に成り立つ規則性である。名前は数学者オーガスタス・ド・モルガン(Augustus de Morgan, 1806–1871)にちなむ。 この規則性(論

    ド・モルガンの法則 - Wikipedia
  • Elixir解答

  • 線型代数学 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Linear algebra|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明が

    線型代数学 - Wikipedia
  • 行列 - Wikipedia

    数学の線型代数学周辺分野における行列(ぎょうれつ、英: matrix)は、数や記号や式などを縦と横に矩形状に配列したものである。 概要[編集] 行・列[編集] 横に並んだ一筋を行(row)、縦に並んだ一筋を列(column)と呼ぶ。 例えば、下記のような行列 は2つの行と3つの列によって構成されているため、(2,3)型または2×3型の行列と呼ばれる。 成分[編集] 書き並べられた要素は行列の成分と呼ばれ、行列の第 i 行目、j 列目の成分を特に行列の (i, j) 成分と言う。行列の (i, j) 成分はふつう ai j のように二つの添字を単に横並びに書くが、誤解を避けるために添字の間にコンマを入れることもある。また略式的に、行列 A の (i, j) 成分を指定するのに Ai j という記法を用いることもある。 和・積[編集] 行列の和は、行の数と列の数が同じ行列において、成分ごとの計

    行列 - Wikipedia
  • 半環 - Wikipedia

    抽象代数学において、半環(はんかん、英: semi-ring)とは環に類似した代数的構造で、環の公理から加法的逆元の存在を除いたものである。負元 (negative) の無い環 (ring) ということから rig という用語もしばしば用いられる。 半環は、以下の性質を満たす二つの二項演算、即ち加法(和)"+" と乗法(積)"·" とを備えた集合 R を言う[1]: (R, +) は単位元 0 を持つ可換モノイドを成す: (a + b) + c = a + (b + c), 0 + a = a + 0 = a, a + b = b + a. (R, ·) は単位元 1 を持つモノイドを成す: (a · b)· c = a ·(b · c), 1 · a = a · 1 = a. 乗法は加法の上に分配的である: a ·(b + c) = (a · b) + (a · c), (a + b)·

  • (解説) はてなブックマークにおけるアクセス制御 - 半環構造に基づくモデル化 - Hatena Developer Blog

    こんにちは、シニアアプリケーションエンジニアのid:taraoです。この記事ははてなデベロッパーアドベントカレンダー2015の10日目です。昨日はid:tapir320によるはてなの組織開発についてでした。 先月開催されたWebDB Forum 2015で、「はてなブックマークにおけるアクセス制御: 半環構造に基づくモデル化」というタイトルの発表をしました。 はてなブックマークにおけるアクセス制御 - 半環構造に基づくモデル化 from Lintaro Ina 発表資料には多くの方に興味をもっていただけたようですが、わかりにくい点も多かったのではないでしょうか。スポンサー企業としての技術報告セッションとはいえ学術会議での発表なので理論面と独自の工夫点にフォーカスした内容であったり、口頭での発表のしかたに大きく依存したスライドの遷移方法になっているので、この資料だけで細かいところまで理解しよ

  • 単位元 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2023年9月) 数学、とくに抽象代数学において、単位元(たんいげん, 英: identity element)あるいは中立元(ちゅうりつげん, 英: neutral element)は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。 定義[編集] (M, ∗) を集合 M とその上の二項演算 ∗ のなすマグマとする。 M の元 e が ∗ に関する(両側)単位元であるとは、M の全ての元 a に対して を満たすときにいう。 さらに細かく、M の任意の元 a に対して、 a ∗ e = a を満たすときに右単位元といい、e ∗ a = a を満たすときに左単位元という。 単位元は左

  • 抽象代数学 - Wikipedia

    抽象代数学(ちゅうしょうだいすうがく、英: abstract algebra)とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。 概要[編集] 二十世紀初頭の揺籃期には現代代数[1]ともよばれ、数学における厳密さへの指向のもととなった。はじめは数学全体と自然科学の多くが依存している古典的な代数の論理的前提が記号論理学による公理の形で書き下され、それをもとに群論や環論などの理論が純粋数学として具現化するという形で理論が発展した。現在では抽象代数学という言葉はそういった諸分野の総体を、実数、複素数や未知数からなる代数的な数式や方程式の変形のやり方をあつかう初等代数学(高校までの代数)から区別するために用いられている。この初等代数学は可換環論への導入的な部分とみなすこともできる。 一つの二項内算法からなる代数的構造の最も簡単なものはマ

  • 数論 - Wikipedia

    この項目では、数学の一分野としての「数論」について説明しています。「数論学派」とも呼ばれる古代インド哲学の学派については「サーンキヤ学派」をご覧ください。 数論(すうろん、英語: number theory)は、数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。 概要[編集] フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 分野[編集] 通常代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。 初等整数論 他の分野の数学的手法を使わずに問題に取り組む、数論の中で最も基礎的な土台をなす。フェルマーの小定理やオイラーの定理、平方剰余の相互法則などはこの分野の成果である

    数論 - Wikipedia
  • 代数学 - Wikipedia

    二次方程式の解の公式 代数学(だいすうがく、algebra)は、数学の一分野で、数の代わりに文字を用いて方程式の解法などを研究する学問[1]。現代の代数学はその研究範囲を大きく広げ、半群・群・環・多元環(代数)・可換体・束などの代数系を研究する学問(抽象代数学)となった。代数学の考え方は、解析学や幾何学等にも浸透しており、数学の諸分野に共通言語を提供する役割を果たしている。 以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は、代表的な代数的構造である。 群・環・多元環・体の理論はエヴァリスト・ガロアなどによる代数方程式の解法の研究などに起源を持ち、束論はジョージ・ブールによる論理学の数学的研究などに起源を持つ。 現代の日の大学では 1, 2 年次に微分積分学と並んで線型代数学を学ぶが、線型代数はベクトル空間という代数系を研究する代数学の一分野である。 歴史[編集]

  • 代数的構造 - Wikipedia

    二つの演算によって決まる代数的構造 環: 加法に関してアーベル群であり、乗法に関して半群(またはモノイド)であり、分配法則を満たす。 体: 0 でない元が乗法に関して群(またはアーベル群)をなす環 演算と作用によって決まる構造 環上の加群: 環の作用するアーベル群 ベクトル空間: 体上の加群 算法や二項演算の項に記す通り、加群やベクトル空間などにいて環や体が与える外部的な作用も適当な方法で内部的な 1 項算法(単項算法)と捉えなおすことができるので、加群やベクトル空間やほかにも同様に作用域を持つ構造である多元環などが、群や環と同様のもの(多くの演算によって決まる構造)として統一的に論ずることもできる。 さらに複雑なもの 代数(多元環): 乗法の定義された加群やベクトル空間 結合代数: 乗法が結合法則を満たす代数 可換代数: 乗法が可換な結合代数 束: 二つの演算が定義されている集合で、演算

  • 準同型 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "準同型" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年10月) 代数学において、二つの代数系が準同型(じゅんどうけい、homomorphic)であるとは、それらの間に数学的構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) があることを意味する。 構造がまったく同じであることを表すときは、代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。 構造により、等長・等距、同相や射型などといった特定の術語が用いられることがある。 定

  • 「代数は必要ない」:全米を揺るがしたある教授の主張|WIRED.jp

  • 1