Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Perfumeが紅白歌合戦でディープラーニングについて言及して話題になりましたが、それに関連する技術がGoogleのブログで公開されていたので再現してみました1。本来はColud Vision APIを使ったとのことですが、精度や速度を犠牲にすれば、普通のPCかつ1人でも実装できてしまいます。その方法を書いていきます。 訂正:Googleが使ったではなく、正しくはライゾマティクスに使っていただいただとのことです。失礼いたしました2。タイトルも訂正いたしました。 元ネタ こちらのブログに詳しく書かれています。 Perfume とライゾマテ
他のDLライブラリを勉強するのが面倒という理由でkerasで実装されていないネットワークを組んではいけないというアンチパターンの話。つまり闇のkerasに対する防衛術の話です。 kerasでゴリゴリ学習コードを書いてはいけない kerasはLSTMが数行で書けたり、vggなどの有名なモデルが揃っている、便利なラッパーとなっていますが、kerasで実装されていない論文のコードを書くことは極力避けましょう keras以外に慣れていなくてもです。 とっととtensorflowかpytorchを勉強してください。 理由 通常のフィードフォワードな分類or回帰のネットワーク(全結合、CNN、autoencoderなど)や既にラッパーが用意されているLSTMは瞬時に実装できますし、パラメータチューニングも簡単なので是非kerasを使いましょう ただし以下のような場合は絶対にkerasを使わないでくださ
はじめに Eager Executionの書き方 インポート データの準備 モデルの書き方 学習コード モデルの評価 補足 Google colabでのTensorBoard 最後に はじめに TensorFlow2.0から Eager Execution と Keras API が標準になる見込みです。すでにブログではこのことを何度か取り上げています。 www.hellocybernetics.tech www.hellocybernetics.tech 今回は、TF2.0から最も標準的になると思われるコードの書き方を見ておきましょうというテーマになります。 特にディープラーニングのテクニックや手法の考察などは行わないので、あくまで書き方の参考という程度に御覧ください。 コードはgoogle colabで書いていったので、基本的にはjupyter notebookなどで動作させることを想
Keras yurukyara mascot 🦄✨🧠📈 https://t.co/HmnZgMaIFr
転移学習として訓練済みモデルは非常に有用ですが、たまに途中にDropoutを入れたい、BatchNormを入れたいなど困ったことがおきます。今回はVGG16にBatchNormを入れる、MobileNetにDropoutを入れるを試してみます。 VGG16にBatchNormalizationを入れる 理論と実装上の注意 転移学習としてよく使われるVGG16ですが、実は古臭いモデルでBatchNormalizationが入っていません1。現在の分類問題において、よほどの理由がなければBatchNormalizationは入れるべきなので入れてみましょう2。 VGG16では、「Conv→Conv→Conv→Pool」のように並んでいますが、Conv→Convを「Conv→BatchNorm→ReLU→Conv→…」と置き換えます。また元のConvにはReLUの活性化関数がついているので、Co
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 画像の領域検出(セグメンテーション)によくコンペなどで使われるU-Netですが、オートエンコーダー(AE:Auto Encoder)としての側面もあります。今回はU-NetをAEの側面から見て、自己符号化や白黒画像のカラー化といったAEっぽいことをしてみます1。なぜU-Netが強いのかより理解できることを期待します。 全体コード:https://gist.github.com/koshian2/6bcfb03dbc187024da9e86b24c44a5b3 TL;DR U-Netが強いのはEncoderとDecoderとの間に「Con
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 2018年もいよいよ本日が最後となりました。皆さんいかがお過ごしでしょうか。この記事では機械学習/ディープラーニング初心者だった自分が2018年にやったことをまとめていきたいと思います。ポエムじみた記事になってしまいましたが、何らかの参考になれば幸いです。 2018年のBefore-After Before 今年(4月)ぐらいまで機械学習の「き」の字も知らなかった。k-Nearest Neighbor?Support Vector Machine?なにそれ美味しいのってレベル 昔統計をやっていたので、ロジスティクス回帰ぐらいは知っていた
Pythonのディープラーニング用ライブラリKeras開発者のFrançois Cholletと、RStudio創設者兼CEO兼開発者としてRコミュニティで絶大な信頼を集めるJ. J. Allaireによる共著。ディープラーニングを学びたいRユーザ向けに、まず概念を説明し、それを実装したサンプルを示すというスタイルで、実際にサンプルを動かしながら学ぶことができます。ディープラーニングとはどんなものか、AIや機械学習との関連、なぜ重要性が増しているのかだけでなく、コンピュータビジョン、自然言語処理などの実用的な例題も扱います。使い慣れたRを使ってディープラーニングについて学びたいというRユーザの期待に応える一冊です。 はじめに 第Ⅰ部 ディープラーニングの基礎 1章 ディープラーニングとは何か 1.1 人工知能、機械学習、ディープラーニング 1.1.1 人工知能 1.1.2 機械学習 1.1
はじめに 東大松尾研のデータサイエンティスト養成講座を受けてみて、アウトプットしないのももったないので、今後データサイエンティストを目指そうという方に向けて自分がためになったと思ったことをつらつらと書いていきます。 データサイエンティストとは(定義) ビジネスの課題に対して、統計や機械学習(数学)とプログラミング(IT)スキルを使って解決する人 次のうちどれかが欠けてもデータサイエンティストとは言えない 数学や統計の知識 実装できるエンジニアリング能力 ビジネス課題を解決していくコンサルティング能力 参考URL: https://www.zs.com/services/technology/technology-services/big-data-and-data-scientist-services.aspx これを聞くとデータサイエンティストになるにはすごい難しいと自分は感じました。
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ※実際記事で紹介する書籍は12冊ですが、メンバーが借りてオフィスになかったため、上記画像内に3冊ないものがあります。 はじめに AI Academyを開発・運営しています、株式会社エーアイアカデミー代表の谷です。 6ヶ月ほど前に書いた下記記事は約1200のいいねと7万viewsを超える記事になりました。 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 お読み頂いた方々、またいいねして頂いた方々ありがとうございました! あれから6ヶ月ほど経ちまして、さらにPythonや機械学習の書籍が増えて参りましたので、
自分の備忘録/メモも兼ねて。 画像認識系のDeep Learningする際に、訓練データ(画像)を回転させたり左右反転したり、とデータの水増し(data augumentation)することってよくあると思います。Kerasでは、ImageDataGeneratorクラスを使って簡単に水増しできちゃうわけですが、その際のオプション「brightness_range」の挙動について。 Kerasのbrigtness_rangeとは brightness_rangeは、画像データの水増しの際に、明るさをランダムに変更するオプションです。こんな感じでImageDataGeneratorのコンストラクタに、brightness_rangeのオプションとして、明るさ変更の強度の範囲をタプルかリストで渡すだけです。あとはflowとかflow_from_directoryとかに上記を渡してあげると、ラン
WeightとBiasを見るために Kerasでモデルをsaveしたときにハマったので、一応の自分用のメモ もし抽出で悩んだ人がいれば幸い 例として以下のMNISTの3層MLP(下はFunctional API) # coding utf-8 from __future__ import function import keras from keras.datasets import mnist from keras.models import Model from keras.layers import Dense, Dropout, Input from keras.optimizers import RMSprop (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60
画像関係のKaggleコンテストで、Kerasを使いつつコードを書いていたところ、前処理などで工夫しても厳しそうなレベルでメモリ不足に悩まされました。(しかし、一方で精度を上げるためになるべく多くのデータを使いたい) 他の人はどうやっているんだろう?と他人のカーネルを見ていたところ、KerasのSequentialクラスにfit_generator関数という、バッチ単位でデータを扱ってくれる(=瞬間的なメモリが少なくて済む)関数を使っているようでした。 過去に読んだ書籍だと、この関数は使っていなかったので、触りながら色々調べてみます。 簡単な例で試してみる。 MNISTで試してみます。モデルのコード自体は、以前書いたGoogle colaboratoryを試してみる(Keras & MNIST)のものをほぼそのまま使います。 X.shapeが(60000, 1, 28, 28)、y.sha
以下のshell sessionでは (base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。 それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。 それぞれの章のフォルダに移動します。 dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。 ファイル共有または複写 dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。 複写の場合は、dockerを
KerasでF1スコアをモデルのmetrics(評価関数)に入れて訓練させてたら、えらい低い値が出てきました。「なんかおかしいな」と思ってよく検証してみたら、とんでもない穴があったので書いておきます。 環境:Keras v2.2.4 要点 KerasのmetricsにF1スコアを入れることはできるが、調和平均で出てくる値をバッチ間の算術平均で計算しているので正確な値ではない 正確な値を計算したかったらmetricsではなく、コールバックでエポックの最後に一括で求めるべき F1スコアとは Precision-recallのトレードオフの最適解を求めるための尺度。特に精度が意味をなさなくなる歪んだデータに対して有効。F1スコアについて知っている方は飛ばしていいです。 歪んだデータとは 2クラス分類を考えるとしましょう。設定は猫と犬の分類、メールがスパムかスパムではないか、なんでもいいです。2ク
はじめに ディープラーニングというワードは聞いたことがあるけどどこから手を出したら良いかわからないという人向け。 PythonとかCNNとかKerasとかさわったことない初心者が画像分類やるぞという記事です。 SIGNATE Data Science Competitionに参加して初めてディープラーニングを触ってみたところとっつきやすかったので知見を残したいというのが本記事投稿のきっかけです。 Google Colaboratoryとは Google Colaboratory(以下、Colab)は、クラウドで実行されるJupyterノートブック環境である。 機械学習などの基本的な環境構築は設定済みで、Tesla系のK80 GPUを無料で最大12時間まで使えるという神環境。 機械学習初心者からそれなりの規模までの学習の実行を行うのに適している。 今回やること Colabを初めて使うときの設
1.すぐに利用したい方へ(as soon as) 「Advanced Deep Learning with Keras」 By Philippe Remy http://shop.oreilly.com/product/0636920154891.do docker dockerを導入し、Windows, Macではdockerを起動しておいてください。 Windowsでは、BiosでIntel Virtualizationをenableにしないとdockerが起動しない場合があります。 また、セキュリティの警告などが出ることがあります。 docker pull and run 以下のshell sessionでは (base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してくださ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く