Keras : コード解説 : IMDB 感情分析 using Embedding, LSTM 層 * Keras GitHub の サンプル の幾つかの imdb_*.py スクリプト・ベースの snippets。 IMDB 感情分析 using Embedding, LSTM 層 アマゾンが提供している、 インターネット・ムービー・データベース という映画・TV ドラマの情報配信サイトのレビューを使用した感情分析モデルの実装です。 幾つかのモデルが用意されていて、Embedding(埋め込み)層、 LSTM 層 そして畳み込み層を混在させて使います。 インポート from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility from keras.p
Home TFLearn Quick overview Where to Start? Model Visualization Sources Contributions License Index Installation Getting Started Tutorials Examples Models Deep Neural Network Generative Neural Network Layers Core Layers Convolutional Layers Recurrent Layers Normalization Layers Embedding Layers Merge Layers Estimator Layers Built-in Ops Activations Objectives Optimizers Metrics Initializations Los
TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. TFLearn features include: Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast p
For bugs/issues, please fill in the following. The more information you provide, the more likely we can help you. Environment info Operating System: Mac OS (El Capitan / Python 2.7) If installed from binary pip package, provide: Which pip package you installed. Virtualenv The output from python -c "import tensorflow; print(tensorflow.version)". 0.7.1 If installed from sources, provide the commit h
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 12 I tensorflow/core/common_runtime/gpu/gpu_init.cc:88] Found device 0 with properties: name: GeForce GTX TITAN X major: 5 minor: 2 memoryClockRate (GHz) 1.076 pciBusID 0000:05:00.0 Total memory: 11.99GiB Free memory: 11.69GiB I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA: 0 I tensorflow/cor
どうも、データセットの用意でバイナリーとの戦いを5時間繰り広げたあげく、記事に1日かかりました。丁寧に記事書くって大変ですね。うふふっ☆ 前回: 特にプログラマーでもデータサイエンティストでもないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説 に続き、MNISTのエキスパート編を解説しようと思ったのですが、せっかくなので数字ではなくひらがなデータセット計71文字を識別していくなかで**"畳み込みニューラルネットワーク"の解説をしたいと思います。 英語ではConvolutional Neural Networkなので以下CNN**と呼びます コードはほぼTensorflowのチュートリアルエキスパート編のものですので、そちらを見てからだとよりわかりやすいかと。 #1: データセット 産総研(AIST)の公開しているETL手書き文字データベースからいただきました。(旧:電総研の
はじめに LSTM(Long Short Term Memory) は時系列データの学習によく用いられているものです。 わかるLSTM ~ 最近の動向と共にの記事がとても詳細に説明されています。 上記でも解説されていますが、LSTMは例えば「今までの単語列を入力として、もっともらしい次の単語を予測する」というような「文章の生成」に使うことができます。 このLSTMを使って、例えば、Webサービスにアクセスする 「ユーザの行動」を「単語」 とみなせば 「ユーザの一連の行動」は「文章」 とみなせるわけで、 **「こういう行動を取ってきた人は、次にこういう行動を行う」**という予測モデルが作れないかと考えました。 この予測モデルが作れれば、あとは文章生成のような形で 行動生成 ができます。つまり、ある種の ユーザ行動のシミュレーション ができることになります。 ユーザがある程度アクセスすれば、
続・TensorFlowでのDeep Learningによるアイドルの顔識別 - すぎゃーんメモ の続き、というかなんというか。 前回までは「ももいろクローバーZのメンバー5人の顔を識別する」というお題でやっていたけど、対象をより広範囲に拡大してみる。 様々なアイドル、応援アプリによる自撮り投稿 あまり知られていないかもしれないけど、世の中にはものすごい数のアイドルが存在しており、毎日どこかで誰かがステージに立ち 歌って踊って頑張っている。まだまだ知名度は低くても、年間何百という頻度でライブを中心に活動している、所謂「ライブアイドル」。俗に「地下アイドル」と言ったりする。 ライブアイドル - Wikipedia そういったアイドルさんたち 活動方針も様々だけど、大抵の子たちはブログやTwitterを中心としてWebメディアも活用して積極的に情報や近況を発信していたりする。 そんな中、近年登
なぜかあまりやっている人を見ない、ディープラーニングを使用した株価の予想をしてみます。 ディープラーニング、Pythonともに初心者です。ライブラリ、実装方法、理論等は殆ど分かっておりません。ツッコミ等お待ちしています。 目標 数日分の株価データを使用して、翌日の日経平均株価が「上がる」か「下がる」か「変わらず」かを予想します。(分類) 概要 「上がった」か「下がった」か「変わらず」だったかの判断には翌日の終値をベースに判断。 入力データは数日前から前日までの「始値」「高値」「安値」「終値」を使用。 隠れ層は4つ。 入力として上記過去数日分の株価をぶっこんでトレーニングするだけです。 環境 TensorFlow 0.7 Ubuntu 14.04 Python 2.7 AWS EC2 micro instance 内容 準備 可能な限りの日経平均のデータを用意します。今回はYahooファイナ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く