Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
トレンド(世界):すべての国/過去12か月/基準としたキーワードを外さずに数値を取得 トレンド(日本):日本/過去12か月/基準としたキーワードを外さずに数値を取得 Highcharts 公式サイト:Interactive JavaScript charts for your webpage | Highcharts デモサイト:Demos / Stock Demos / Maps Demos / Gantt Demos GitHub:https://github.com/highcharts/highcharts npm:https://www.npmjs.com/package/highcharts CDN:https://code.highcharts.com/highcharts.js ライセンス:商用利用は有償、非営利向け無料ライセンスあり(詳細後述) 推薦しておきながら入門記事
正規分布とそのフィッティング すでに何度か登場している線形回帰ではデータの分布にフィットする線の理論式を最小二乗法にて求めました。線形回帰など今までに登場したさまざまな分析の多くで正規分布が仮定されます。 フィッティングに欠かせない手法とも言える最小二乗法は、プロットされたデータを理論式にフィッティングさせることによって理論式中に含まれる定数がいくらであるか、そこからさまざまな情報を得ることができます。たとえば各点にフィットする直線の傾きを求めたいとき、正規分布を仮定する分布の統計量を求めたいときなど色々な場面で使われます。 正規分布 (normal distribution) はまたの名を ガウス分布 (Gaussian distribution) と言い、平均値の付近にピークが集積するデータの分布を表した連続変数に関する確率分布であることは過去の記事でも説明しました。正規分布に対する近
2軸プロットが欲しくなるとき y軸が左右にあるいわゆる2軸プロットはExcelなんかでは簡単に作れるがggplot2では簡単には作れない。 つまりそもそもそんなもん作るなという話だが、欲しくなる場面はある。 例として気温(℃)と相対湿度(%)と飽差(Pa)をプロットする場合を挙げよう。飽差は気温と相対湿度から算出できる数値で、「乾きやすさ」の指標と考えてもらえればいい。 日常的な環境では、3つの変数のうち相対湿度が最も大きく変動するので、これらを1枚に収めると相対湿度の変動だけが目立ってしまう。したがって、相対湿度だけ第2軸に移してなんとかしたい、という動機が生ずる。 使用データ 上述の気温、相対湿度、飽差をプロットする例を想定し、次のように作成した。 ## function ---- svp <- function(t){ # 飽和水蒸気圧計算 Alduchov and Eskridge
はじめに 本記事はPython2.7, numpy 1.11, scipy 0.17, scikit-learn 0.18, matplotlib 1.5, seaborn 0.7, pandas 0.17を使用しています. jupyter notebook上で動作確認済みです.(%matplotlib inlineは適当に修正してください) SklearnのManifold learningの記事を参考にしています. 多様体学習と言われる手法について,sklearnのdigitsサンプルを用いて説明します. 特にt-SNEはKaggleなどでもたまに使用されている,多次元データの可視化に適した手法です. また可視化だけでなく,元のデータと圧縮されたデータを結合することで,単純な分類問題の精度を向上することができます. 目次 データの生成 線形要素に注目した次元削減 Random Proj
やりたいこと scikit-learn はPythonのほぼデファクトの機械学習ライブラリです.scikit-learnの利点としては多くのアルゴリズムが実装されていることもそうですが,一貫した形で設計されており様々なアルゴリズムを共通したかたちで扱えることです.scikit-learnにないアルゴリズムを新たに実装したり,他のライブラリを使用するときにsciki-learnの他の推定器と同様に扱えるよう実装すれば,もともと実装されている推定器同様にクロスバリデーションで性能を評価したりグリッドサーチでパラメータを最適化したりできます.ここでは最低限の推定器の実装を示します.ここでは識別器または回帰器をターゲットとして考えます(クラスタリングとか教師なし学習とかは考えない). べたな実装 from sklearn.base import BaseEstimator class MyEsti
こんにちは。 林@アイエンターです。 前回はブログでは数学的なアプローチの回帰分析のお話をいたしました。 最近は統計分析や機械学習の分野では、Pythonが使われるケースが増えています。 Pythonには、数理演算やデータ可視化の強力なライブラリがそろっているのが その一因かと思います。 今回は「scikit-learn」という機械学習で良く用いられるpythonライブラリを紹介します。 非常にパワフルなライブラリーです。 実際、前回のブログのサンプルデータをライブラリーで回帰分析してみます。 ■環境セットアップ 「Anaconda」という、Pythonパッケージをインストールします。 これはPython本体と、科学技術、数学、データ分析関連で良く使われるライブラリを、一括でインストールできるパッケージです。 Windows/MacOS/Linuxのそれぞれのパッケージが用意されています。
>>> import numpy >>> numpy.show_config() lapack_opt_info: extra_link_args = ['-Wl,-framework', '-Wl,Accelerate'] extra_compile_args = ['-msse3'] define_macros = [('NO_ATLAS_INFO', 3)] blas_opt_info: extra_link_args = ['-Wl,-framework', '-Wl,Accelerate'] extra_compile_args = ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Headers'] define_macros = [('NO_ATLAS_INFO', 3)] にて確認する. 調べた結果,upda
対象 Python及びNumPy初心者に向けて書いています. 「C言語は使えるけど最近Pythonを始めた」とか「Pythonらしい書き方がよくわからない」に該当する物理系の数値計算を目的とした方には特に有用かもしれません. また, 自分の不勉強のために間違った記述があるかもしれません. ご容赦ください. あらまし 内容はNumPyを用いた数値計算の高速化 : 基礎のつづきです. ndarrayのユニバーサル関数や演算を用いて可能な限りforループを使わずに基礎的な数値計算を実装していきます. 今回からSciPyも仲間に加わります. 以下ではNumPy・SciPyの関数の詳しい実装についてはあまりコメントしていないので, わからないことがあったら是非リファレンスを読んでみてください. 言わずもがな, 車輪の再発明をしないことがとっても大事です. 微分 物理の基礎方程式には微分がつきものです
対象 Python及びNumPy初心者に向けて書いています. 「C言語は使えるけど最近Pythonを始めた」とか「Pythonらしい書き方がよくわからない」に該当する物理系の数値計算を目的とした方には特に有用かもしれません. また, 自分の不勉強のために間違った記述があるかもしれません. ご容赦ください. あらまし NumPyを用いた数値計算の高速化 : 基礎 NumPy・SciPyを用いた数値計算の高速化 : 応用その1 の続きになります. 基礎的な数値計算の手法を追っていきますが, 今回は少し発展的な内容も含みます. 代数方程式 / 超越方程式 代数方程式はいわゆる手で解けるふつうの方程式です. 超越方程式は随分大仰な名前ですが, 代数的な手法で解けない方程式のことを指します. 具体的には $$ \sin(x) = \frac{x}{2} $$ こんな子です. この方程式は, 「$\s
あらまし 以前の記事でNumPy・SciPyの高速化にまつわる事柄を書きました: NumPyを用いた数値計算の高速化 : 基礎 NumPy・SciPyを用いた数値計算の高速化 : 応用その1 NumPy・SciPyを用いた数値計算の高速化 : 応用その2 ホントに早くなってるの?ちゃんと調べてみましょう. 調査方法 Pythonによるオレオレ実装と比較します. 速度よりシンプルさを重視した実装との比較なので正当な評価とは言い難いかもしれません. Pythonはanaconda3, 時間計測にはIPythonの%timeitを使用します. --実行環境-- OS : Ubuntu16.04 LTS 64bit Python : anaconda3-4.1.1 CPU : Intel Corei5 3550 (4-core / 4-thread) リストの初期化 たとえば行列の初期化です.
前々から「日本にソフトウェアエンジニアって何人ぐらいいるのかな?」「ソフトウェアエンジニアだと定義が曖昧だけど、例えば"Githubアカウントを持ってる日本人"は何人いるんだろう」と気になっていました。 最近ふとそれを調べる方法を思いついたので、調べてみた結果を書きます。 ちなみに 政府統計無いのかな?と調べたら「IT人材を巡る現状について」という資料がありました。 ここでは「情報サービス業とインターネット付随サービス業の総人数」は**「約100万人」**と書かれていますが、その内コードを書く人が何人いるのかは依然不明です。 調べ方 Githubのユーザー検索を使います。 調べ方1: Locationの存在比で調べる 「ユーザー検索でlocation:Tokyoを調べた結果が18000人だった。東京の人口:日本の人口=1:10なので、日本人Githubユーザーは約18万人!」という考え方で
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く