Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

Apple Silicon M1 でtensorflow-macosを実行したらめちゃくちゃ速かった。MacDeepLearningAppleTensorFlowAppleSilicon はじめに Macbook Air (AppleSilicon, M1)を購入しました。 Appleが設計したM1は下馬評以上の性能を叩き出し、とても盛り上がっていますね。 M1のハードウェアとしての魅力はもちろんすごいですが、M1に合わせた各種ソフトウェアの最適化も魅力的です。 AppleがTensorflowをフォークしてM1で最高のパフォーマンスを発揮するように最適化したコード(tensorflow-macos)を公開しています。 https://github.com/apple/tensorflow_macos#requirements tensorflowのブログ記事でパフォーマンスが比較されてい
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに この記事は以前作成した競艇予想のモデルをAWS Lambda上で使用し、 競艇予想APIを作成したときのお話です。 やっていることは単純ですが、これを実現するために私の夏休みをすべて費やしました(泣) ですので、私のようにAWS Lambdaで自身が作成した機械学習モデルを使用したいと 考えている方の助けとなれるように記事を書きました。 アジェンダ 1.使用したライブラリ、実行環境について 2.処理内容について 3.アーキテクチャ図について 4.競艇予想APIを作る上で困った点について 5.Serverlessについて 6.S
TL;DR 以下記事をもとに、PyMC4のバックエンドにtensorflowが採用された経緯をまとめました。 see: Theano, TensorFlow and the Future of PyMC – PyMC Developers – Medium ポイント tensorflowには既に多くのユーザがいること(デファクトスタンダードであること) 確率プログラミングに必要な確率分布や変換処理が実装されているtensorflow probability(edward2)が使えること tensorflow probabilityは低レベルでフレキシブルなAPI、PyMC4は高レベルでユーザフレンドリーなAPIという棲み分けが上手くできること PyMC4のバックエンドにtensorflowが採用された理由 PyMC3のバックエンドのTheanoが開発停止 まずは2018/05/18の以下記
はじめに カブクで機械学習エンジニアをしている大串正矢です。今回は深層学習を用いた時系列データにおける異常検知について書きます。 背景 深層学習を異常検知に使用するにあたって閾値設定や評価尺度であるROCについての記述が日本語のウェブの資料で見つけられなかったので本ブログで記述することにしました。以前のブログに異常検知の基礎的な内容があるのでその内容を踏まえた上で読んで頂けると理解がしやすいと思います。 異常検知の基礎 時系列データにおける異常検知 情報圧縮に関するモデル(AutoEncoderなど) 利点: RNNなどに比べ少ないパラメータで学習可能なため高速 欠点: 系列データ特有の過去の値を考慮した予測ができない 系列データに関するモデル(RNNなど) 利点: 系列データ特有の過去の値を考慮した予測が可能 欠点: 構造上、GPU上での並列化が難しいため学習に時間がかかる 本記事では系
2019/5/11 PR: こちらの内容を含め、2019年5月11日発刊の 図解速習DEEP LEARNINGという本ができました。[2019年5月版] 機械学習・深層学習を学び、トレンドを追うためのリンク150選 - Qiitaでも、一部内容をご覧いただけます 19/1/11 18年1月の公開後、TensorFlow本体にKeras統合、Chainerがデフォルトで提供となるなど、状況が変化したため、大幅に加筆しました。TensorFlow 2.0 Previewについても追記しました。 19/1/31 PyTorchが標準インストールとなったこと、PyTorch/ TensorFlowのColab版チュートリアルを追記。 2019/3/9 Colaboratoryに関する情報交換Slackを試験的に立ち上げました。リンクより、登録・ご参加ください。 TL;DR Google Colab
ニューラルネットワークを用いた機械学習の「ディープラーニング(深層学習)」は人工知能(AI)開発に欠かせない技術であり、AI以外にもGoogleフォトの画像の自動タグ付け機能やAmazonのレコメンド機能など、すでに実用化されている技術に活用されています。そんなディープラーニングを開発者が学習するためのとっておきの方法をGoogleのクラウド開発者がブログで紹介しています。 Learn TensorFlow and deep learning, without a Ph.D. | Google Cloud Big Data and Machine Learning Blog | Google Cloud Platform https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-w
機械学習は日々進化を遂げ、全てのエンジニアにとって無視できない存在となってきました。 現在では、検索エンジン、マーケティング、データマイニング、SNS等さまざまな分野で活用されています。 そんな中、2015年11月10日にGoogleが機械学習ライブラリ・TensorFlowをオープンソース化し、大きな注目を集めました。 そこで今回は、機械学習に興味があるけれど何から手を付けたらいいのかわからないエンジニア向けに、TensorFlowの入門資料(記事・スライド)をまとめました。 機械学習案件を提案してもらう 特にプログラマーでもデータサイエンティストでもないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説 / Qiita http://qiita.com/tawago/items/c977c79b76c5979874e8 TensorflowがMNIST(手書き数字データ)の
最近 Qoncept では TensorFlow を使った案件が続いており、その中で TensorFlow を iOS 上で使いたいことがありました。 ぱっと浮かんだ選択肢は次の二つでした。 TensorFlow を iOS 用にビルドして C++ の API を Swift から叩く 学習は TensorFlow / Python で行って、テンソルの計算だけを iOS / Swift でシミュレーションする しかし、前者ついては、まだ TensorFlow を iOS 用にビルドできなさそうでしたしできるようになりました(コメント参照)、たとえできたとしても C++ の API を Swift から叩くのは辛そうです。 TensorFlow がありがたいのは学習時の自動微分等の機能であって、学習済みのモデルを利用するときはただテンソルの計算をしてるだけです。別に学習を iOS 上でやり
The first part of this tutorial describes how to install the necessary tools and use the already trained models provided in this release. In the second part of the tutorial we provide more background about the models, as well as instructions for training models on other datasets. Contents Installation Getting Started Parsing from Standard Input Annotating a Corpus Configuring the Python Scripts Ne
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? これ書くだけで土日2日間まるまる潰れてしまった。 学んだ内容に沿っているので、順に読み進めるに従ってコードの話になっていきます。 Tensorflow触ってみたい/みたけど、いろいろまだ理解できてない!という方向けに書きました。 ※2018年10月4日追記 大分古い記事なのでリンク切れや公式ドキュメントが大分変更されている可能性が高いです。 この記事のTensorflowは ver0.4~0.7くらいだった気がするので ver2.0~となりそうな現在は文章の大半が何を参考にしているのか分からないかもしれません。 1: Deep Lear
続・TensorFlowでのDeep Learningによるアイドルの顔識別 - すぎゃーんメモ の続き、というかなんというか。 前回までは「ももいろクローバーZのメンバー5人の顔を識別する」というお題でやっていたけど、対象をより広範囲に拡大してみる。 様々なアイドル、応援アプリによる自撮り投稿 あまり知られていないかもしれないけど、世の中にはものすごい数のアイドルが存在しており、毎日どこかで誰かがステージに立ち 歌って踊って頑張っている。まだまだ知名度は低くても、年間何百という頻度でライブを中心に活動している、所謂「ライブアイドル」。俗に「地下アイドル」と言ったりする。 ライブアイドル - Wikipedia そういったアイドルさんたち 活動方針も様々だけど、大抵の子たちはブログやTwitterを中心としてWebメディアも活用して積極的に情報や近況を発信していたりする。 そんな中、近年登
先日、九工大や東工大などの学生さんが LINE Fukuoka に遊びにきてくれました。せっかく学生さんが遊びに来てくれるので LINE Fukuoka の社員と学生さんとで LT 大会をやろうという運びになって、学生さんは普段やっている研究内容を、LINE Fukuoka 側はなんでも良いので適当な話を、それぞれやりました。当日は私を含む LINE Fukuoka の社員 3 人と、学生さん 2 人の合計 5 人が LT をしました。詳細は LINE Fukuoka 公式ブログに書かれていますので、興味のある方は御覧ください。 [社外活動/報告] 学生を招いてのエンジニア技術交流会を開催しました。 LT に使った資料は公開してもいいよ、とのことだったので、せっかくなので公開。当日はテキスト分類のデモをやったのですが、残念ながらデモ環境までは公開できませんでした。ただ、ソースコードは gi
The full code is available on Github. In this post we will implement a model similar to Kim Yoon’s Convolutional Neural Networks for Sentence Classification. The model presented in the paper achieves good classification performance across a range of text classification tasks (like Sentiment Analysis) and has since become a standard baseline for new text classification architectures. I’m assuming t
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Hadoop Conference Japan 2016 もともとは2月8日に開催されるHadoop Conference Japan 2016のセッションとしてこの話を応募したのですが、あえなく落選しました……(;_;) しかし、ありがたいことに復活戦のLightning Talkの投票では5位に選んでいただき、ランチタイムA会場でお話することになりました。ありがとうございます! 今回のスライドはここで公開しています。 とはいえ、5分のLTではこの内容をしっかりと伝えられる自信がないので、以下でスライド内容の詳しい解説をしたいと思いま
*Note: This project is no longer actively being maintained. Please check out the official tfdbg debugger TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the computational graph. Video Demo Specifically, TDB is the combination of a Python library and a Jupyter
GREE Advent Calendar 2015の1日目担当のふじもとです、グリー株式会社でCTOをしてます、もう10年目です。 今年もChristmasに向けてみんなで毎日更新していきますので、ぜひぜひよろしくおねがいします。 わりとどうでもよい序 去年、一昨年は25日担当だったんですが、今年は (なんでかは知らないけど) 1日目書くことになったので、ちょっと趣向を変えて技術的な内容にしてみたいと思います。 なおタイトルに、Deep Learningだの自然言語処理 (以下NLP) だの書いてますが、ぼくは機械学習やNLP、はたまたDeep Learningの専門家でもなくって、たしなむ程度に勉強していたくらいです。ので、この記事はアルゴリズムについて詳しくなろうっていうよりは、いろいろ試してみたっていう方向になってます。 Summary わりと単純なCNN + 少ないコーパスでも、タ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く