並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 113件

新着順 人気順

print string in json format pythonの検索結果1 - 40 件 / 113件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • Netflixにおける実用的なAPI設計: gRPCとFieldMask | pyspa

      Netflix Tech BlogのgRPC APIに関する以下の2つの記事に感銘を受けたので、ここにその概要を日本語で記します。 (めんどくさかったので)翻訳の許可は取ってませんが、再構成してますし元のJavaではなくPythonで書き直していますので、容赦して下さい… Practical API Design at Netflix, Part 1: Using Protobuf FieldMaskPractical API Design at Netflix, Part 2: Protobuf FieldMask for Mutation OperationsまとめgRPCでは、FieldMaskをうまく使うことで、必要な情報だけ取得したりあるいは与えたりしたりできまっせ第一部まずField Maskをどのように使うかを述べています。 背景Remote Callというものは、そもそもコ

        Netflixにおける実用的なAPI設計: gRPCとFieldMask | pyspa
      • 分散データシステム入門の決定版『データ指向アプリケーションデザイン』をたった30分で学んでみた #DataEngineeringStudy | DevelopersIO

        基調講演「30分でわかるデータ指向アプリケーションデザイン」 ・ スピーカー 斉藤 太郎氏  Twitter:@taroleo / Github:@xerial Principal Software Engineer , Treasure Data 東京大学理学部情報科学科卒。情報理工学 Ph.D。データベース、大規模ゲノムデータ処理の研究に従事。その後、スタートアップであるTreasure Dataに加わり、アメリカ、シリコンバレーを拠点に活動中。日本データベース学会上林奨励賞受賞。OSSを中心にプログラミングやデータ処理を簡単にするためのプロダクトを作成している。 「30分でわかるデータ指向アプリケーションデザイン」最新の論文にも触れながら、分散データシステムの世界の魅力を伝えていきます。後半、@tagomoris https://t.co/TQ2TnsFIOT… — Taro L.

          分散データシステム入門の決定版『データ指向アプリケーションデザイン』をたった30分で学んでみた #DataEngineeringStudy | DevelopersIO
        • プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ

          技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.0.0 がリリースされました。一昨年、昨年に続き、今年も Ruby 3.0 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は一昨年の記事を見てください(なお Ruby 3.0.0 から、NEWS.md にファイル名を変えました)。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ Ruby 3.0 は、Ruby にとってほぼ 8 年ぶりのメジャーバージョンア

            プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ
          • LangChainを使わない - ABEJA Tech Blog

            TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

              LangChainを使わない - ABEJA Tech Blog
            • みんなのためのLLMアプリケーション開発環境の構築事例

              はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                みんなのためのLLMアプリケーション開発環境の構築事例
              • YAML完全活用マニュアル──AIエージェント開発とプロンプト工学の次世代標準|hirokaji

                はじめに:いま、YAMLを再評価する理由2025年、生成AIとプロンプトエンジニアリングの発展は新たな開発様式をもたらしました。 ChatGPT、Claude、Geminiといったモデルの急速な進化により、LLM(大規模言語モデル)との対話は単なる質問応答を超え、構造化された命令、複雑な推論、そしてマルチエージェント間の協調へと展開しています。 こうした「AIが行動する時代」において、従来のコードやスクリプトだけではカバーしきれない、構成・設定・意味づけのインターフェースとして脚光を浴びているのが YAML です。 YAMLはもともと構成ファイルとして使われてきた言語ですが、 自然な階層構造 可読性の高さ コメントによる意図の明示 データとしての再利用性 JSON互換性 といった特徴により、人間とAI、開発者とエージェントの共通言語としての地位を獲得しつつあります。 特に近年はX(旧Twi

                  YAML完全活用マニュアル──AIエージェント開発とプロンプト工学の次世代標準|hirokaji
                • gpt-oss の使い方|npaka

                  以下の記事が面白かったので、簡単にまとめました。 ・Welcome GPT OSS, the new open-source model family from OpenAI! 1. gpt-oss「gpt-oss」は、OpenAIによる待望のオープンウェイトリリースであり、強力なReasoning、エージェントタスク、そして多様な開発者ユースケース向けに設計されています。117Bのパラメータを持つ大規模モデル「gpt-oss-120b」と、21Bのパラメータを持つ小規模モデル「gpt-oss-20b」の2つのモデルで構成されています。どちらも「MoE」(Mixture-of-Experts) であり、MXFP4を使用することで、リソース使用量を抑えながら高速推論を実現します。大規模モデルは単一のH100 GPUに収まり、小規模モデルは16GBのメモリ内で動作し、コンシューマーハードウェア

                    gpt-oss の使い方|npaka
                  • SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services

                    Amazon Web Services ブログ SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する みなさんこんにちは。ソリューションアーキテクトの福本です。 本投稿のテーマは Software as a Service(SaaS)におけるルーティングです。 SaaS ではテナントごとにサーバーなどのリソースが分離されていることがあります。そのため、各テナントに属するユーザーからのリクエストを適切なリソースへとルーティングする必要があります。 具体的なルーティングの話に入る前に、SaaS のテナント分離モデルについて説明をします。SaaS では、テナントの分離モデルとしてサイロ、プール、ブリッジモデルが存在します。また、ユーザーがサブスクライブしている利用プラン (ティア) によって、リソースの分離形態が変わるような、階層ベースの分離もあります。 サイ

                      SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services
                    • ぼくのMac環境 ver.のんピ | DevelopersIO

                      何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                        ぼくのMac環境 ver.のんピ | DevelopersIO
                      • Ollama で structured outputs (構造化出力)を試す|ぬこぬこ

                        tl;drJSON Schema で指定したフォーマットで出力を制御可能になったよ cURL / Python / JavaScript のそれぞれで試してみたよ 具体的な実用例があったのでそれも動かしてみたよ 使う上での tips や今後どんな機能が追加されるかまとめたよ 公開されたブログの流れに準拠しつつ、意図がズレない範囲で翻訳、解説、コードの実行をしていきます。チュートリアルになっているので、よかったら手を動かして試してみてください。 Ollama が structured outputs をサポート。JSON Schema で定義したフォーマットに LLM の出力を制御するすることが可能になりました。Ollama の Python と JavaScript のそれぞれのライブラリにおいてもサポートするよう更新。 ブログでは structured outputs のユースケースとし

                          Ollama で structured outputs (構造化出力)を試す|ぬこぬこ
                        • Fish 4.0: The Fish Of Theseus

                          About two years ago, our head maintainer @ridiculousfish opened what quickly became our most-read pull request: #9512 - Rewrite it in Rust Truth be told, we did not quite expect that to be as popular as it was. It was written as a bit of an in-joke for the fish developers first, and not really as a press release to be shared far and wide. We didn’t post it anywhere, but other people did, and we go

                          • MCP Python SDK のドキュメント|npaka

                            以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                              MCP Python SDK のドキュメント|npaka
                            • GPT in 60 Lines of NumPy | Jay Mody

                              January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                              • gpt-oss-120bをpythonとvLLMで触りながら理解する - ABEJA Tech Blog

                                データサイエンティストをしている服部です。 OpenAIからgpt-ossというオープンモデルが登場しました。 早速ですが、このモデルを使いながら中身を理解していきたいと思います。 gpt-ossのモデル特徴 vLLM上で動かす 通常のtokenizerで動かす 最終出力と思考部分 chat templateも見てみる Tool Useを試す Built-in toolも試す Python blowser 複数のツールを同時並列で使えるか? まとめ We Are Hiring! gpt-ossのモデル特徴 openai.com 他にも紹介している記事はたくさんあるため手短に... 今回OpenAIからは2種類のモデル gpt-oss-120b と gpt-oss-20b がリリースされており、どちらもApache2.0ライセンスで提供されてます。 どちらのモデルもMoE(Mixture o

                                  gpt-oss-120bをpythonとvLLMで触りながら理解する - ABEJA Tech Blog
                                • Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models | Amazon Web Services

                                  AWS News Blog Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models Update October 10, 2023 — Amazon Bedrock is now available in 3 regions globally: US East (N. Virginia), US West (Oregon), and Asia Pacific (Tokyo). This April, we announced Amazon Bedrock as part of a set of new tools for building with generative AI on AWS. Amazon Bedrock is

                                    Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models | Amazon Web Services
                                  • yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳

                                    youtube-dlの開発が止まっておりfork版のyt-dlpに移る事にした。yt-dlpはyoutube-dlのforkであるyoutube-dlcのそのまたforkになる。オリジナルであるyoutube-dlのオプション解説はyoutube-dl オプション一覧及びそのメモ。 2022/06/19更新 2022/09/06更新 OPTIONS -h, --helpヘルプを表示する。 --versionプログラムのVerを表示する。 -U, --update --no-update (default)プログラムのupdateを実行するかどうか。 -i, --ignore-errorsダウンロードエラーを無視する。プレイリストごとダウンロードするような時に使う。エラーで失敗してもダウンロードは成功したとみなされる。 --no-abort-on-error (default) --abor

                                      yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳
                                    • 900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)

                                      こんにちは! ノーリーです。ClaudeやChatGPT、Gemini使ってますか? 今朝リリースされた、Claude 3.5 Sonnet (New)のコード生成能力を味う記事です。 では、まったり参りましょう! 1.公式情報Claude 3.5 Sonnetは、コーディング能力において大きな進化を遂げたAIモデルだそうです。このモデルの新機能と改善点は以下の通りです。 強化されたコーディング支援: Claude 3.5 Sonnetは、JavaScriptやPythonなどの様々なプログラミング言語でコード生成する能力に優れています。簡単なコード補完から複雑な問題解決シナリオまで対応可能で、開発プロセスを大幅に効率化できます。 問題解決能力の向上: HumanEvalベンチマークで64%の問題を解決する能力を示し、前バージョンのClaude 3 Opusの38%から大幅に向上しました。

                                        900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)
                                      • Flutterアプリの定期リリースを支える自動化 - Fast DOCTOR Technologies TECH BLOG

                                        本稿では、ファストドクターのモバイルアプリのリリースフローを整備した取り組みについてご紹介します。 モチベーション ファストドクターのモバイルアプリは、2022年夏にFlutterでのフルリプレースを実施し、それ以降は機能の開発が完了次第随時リリースをするという戦略を取っていました。 この戦略はシンプルであり、開発に関わっているステークホルダーが少ない状況下でうまく機能していました。しかし、組織の拡大に伴い以下のような問題が発生するようになりました。 複数機能の開発スケジュールの調整をしたり、バックエンドのリリース・QAとの整合性を取ったりという必要性が増し、調整コストが肥大化 リリースが不定期なため、いつPull Requestをマージすれば良いか分からずopenされたままのPull Requestが多数 この状況を改善するために、以下の要件を念頭に定期的なリリースとそれを支える仕組みを

                                          Flutterアプリの定期リリースを支える自動化 - Fast DOCTOR Technologies TECH BLOG
                                        • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                                          はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                                            LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                                          • 缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる

                                            はじめに ——あるいは、「知っている」と「理解している」の間 Rustのことは、知っていた。学習もしていた。実務でも使っていた。 でも、それは知っているつもりだった。 知ってるつもり 無知の科学 (ハヤカワ文庫NF) 作者:スティーブン スローマン,フィリップ ファーンバック早川書房Amazon 日々Rustで開発し、BoxとRcとArcを使い分け、tokio::spawnでタスクを生成し、?演算子を当たり前のように書いている。FFI?PyO3使えばいいでしょ。WebAssembly?wasm-bindgenがあるじゃない。技術的には、確かに「使える」レベルにはあった。 でも、心のどこかで感じていた違和感があった。 オートバイのエンジンを分解できる人と、エンジンが動く原理を理解している人は違う。コードが動くことと、なぜそう書くべきかを理解することも違う。私は前者だった。メカニックではあった

                                              缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる
                                            • ChatGPT Assistants API の使い方|ChatGPT研究所

                                              本記事では、2024年4月18日からVersion 2 になったAssistants APIの使い方を1から解説します。 この記事は、OpenAI公式サイトの内容と、実際に手元で実践した結果を混合したものになっています。 まだ探りきれていないので、この記事をアップデートしていく予定です。 まず、以下が新機能の概要です: Assistants API v2(ベータ版)の新機能 -- 2024年4月 -- Assistants APIに様々な新機能と改良を発表し、ベータ版を新しいAPIバージョン`OpenAI-Beta: assistants=v2`に移行します。 新機能は以下の通りです。 * 改良された検索ツール`file_search`を導入しました。アシスタントあたり最大10,000ファイルを取り込むことができ、以前の500倍となります。高速化され、マルチスレッド検索による並列クエリをサ

                                                ChatGPT Assistants API の使い方|ChatGPT研究所
                                              • Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew

                                                Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction In this series of tutorials, we will delve into creating simple 2D games in Common Lisp. The result of the first part will be a development environment setup and a basic simulation displaying a 2D scene with a large number of physical objects. It is assumed that the reader is familiar with some high-level programming language, has a gener

                                                  Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew
                                                • Node.js

                                                  Notable changes built-in .env file support Starting from Node.js v20.6.0, Node.js supports .env files for configuring environment variables. Your configuration file should follow the INI file format, with each line containing a key-value pair for an environment variable. To initialize your Node.js application with predefined configurations, use the following CLI command: node --env-file=config.env

                                                    Node.js
                                                  • June 2022 (version 1.69)

                                                    Update 1.69.1: The update addresses these issues. Update 1.69.2: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the June 2022 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highlights include: 3-way merge editor - Resolve merge conflicts wit

                                                      June 2022 (version 1.69)
                                                    • WSL2でunslothのGPROトレーニングを試してみる|noguchi-shoji

                                                      「DeepSeek-R1 の推論を自分のローカル デバイスで再現できるように」「わずか7GBのVRAMでアハ体験を」とのことなので、UnslothのGRPO(Group Relative Policy Optimizatin)トレーニングを試してみます。 今回は Phi-4 (14B)で試してみます。 You can now reproduce DeepSeek-R1's reasoning on your own local device! Experience the "Aha" moment with just 7GB VRAM. Unsloth reduces GRPO training memory use by 80%. 15GB VRAM can transform Llama-3.1 (8B) & Phi-4 (14B) into reasoning models. Blo

                                                        WSL2でunslothのGPROトレーニングを試してみる|noguchi-shoji
                                                      • What’s in which Python

                                                        Created 17 May 2022, last updated 16 August 2025 This is a summary of what features appeared in which versions of Python. Items with a star were introduced with a __future__ import. The Python release cycle is explained in PEP 602. Each release has its own PEP with specific dates, listed here. The Python Developer’s Guide has a page summarizing the release cycles of Python versions. 3.14: expected

                                                        • Vjeux » Birth of Prettier

                                                          React Conf is around the corner and it's been almost 10 years since Prettier was released. I figured it would be a good time to recount the journey from its early days to now. This is the story of how the "Space vs Tabs Holy War" ended, not through one side winning over the other but instead a technological invention making it the underlying source of tensions no longer being a thing. Back Story S

                                                          • [電話無人対応] Amazon Connectで通話中に発話した内容を、Amazon Transcribeで文字起こしし復唱してみた | DevelopersIO

                                                            はじめに Amazon Connectでの発話内容をAmazon Transcribeで文字起こしし、音声出力するフローを構築しましたので、手順をまとめました。コンタクトセンターの無人対応を想定しています。 文字起こし内容を音声出力するまでの流れは次の通りです。 コンタクトフロー内で「メディアストリーミングの開始」ブロックを使って、Amazon Kinesis Video Streams(以降、KVS)への音声のストリーミングを開始します。 発話します。 発話後、「顧客の入力を保存する」ブロックで、顧客が特定の番号を押すと、ストリーミングが終了します。 「AWS Lambda関数を呼び出す」ブロックを使い、以下の処理を行います。 LambdaでKVSからメディアデータを取得します。 メディアデータから音声データを抽出し、WAV形式に変換し、S3バケットに音声ファイルを保存します。 Amaz

                                                              [電話無人対応] Amazon Connectで通話中に発話した内容を、Amazon Transcribeで文字起こしし復唱してみた | DevelopersIO
                                                            • LLM音声対話システムの応答を高速化してみた | CyberAgent Developers Blog

                                                              はじめまして、CyberAgent AI Lab Intaractive Agentチームの技術研究員の大平といいます。 この記事は CyberAgent Developers Advent Calendar 2023 1日目の記事です。 ChatGPTの登場以降、自然なチャット対話はAPI呼び出しだけで簡単に実装できるようになりました。 更に人間のようなインタラクションを実現しようとすれば、音声対話に発展させたいと思う方も多いかと思われます。 しかし実際にLLMを使って音声対話システムを構築してみると、そのレスポンスの遅さに不満を感じることになります。 この記事ではよくあるシンプルなLLMを用いた音声対話に対していくつかの工夫を施し、その応答速度をできるだけ早めてみようという試みになります。 よくある構成として、以下を用います。 音声認識 Google STT LLM ChatGPT 3

                                                                LLM音声対話システムの応答を高速化してみた | CyberAgent Developers Blog
                                                              • The Absolute Minimum Every Software Developer Must Know About Unicode in 2023 (Still No Excuses!) @ tonsky.me

                                                                If you combine this with the Unicode table, you’ll see that English is encoded with 1 byte, Cyrillic, Latin European languages, Hebrew and Arabic need 2, and Chinese, Japanese, Korean, other Asian languages, and Emoji need 3 or 4. A few important points here: First, UTF-8 is byte-compatible with ASCII. The code points 0..127, the former ASCII, are encoded with one byte, and it’s the same exact byt

                                                                  The Absolute Minimum Every Software Developer Must Know About Unicode in 2023 (Still No Excuses!) @ tonsky.me
                                                                • Why I use attrs instead of pydantic

                                                                  This post is an account of why I prefer using the attrs library over Pydantic. I'm writing it since I am often asked this question and I want to have something concrete to link to. This is not meant to be an objective comparison of attrs and Pydantic; I'm not interested in comparing bullet points of features, nor can I be unbiased since I'm a major contributor to attrs (at time of writing, second

                                                                  • Delimiter-first code

                                                                    Summary I argue for wider usage of delimiter-first in the code three friends [tic, tac, toe] becomes three friends ・tic ・tac ・toe. A new top-level syntax for programming languages is proposed to show advantages of this method. New syntax is arguably as simple, but more consistent, better preserves visual structure and solves some issues in code formatting. Related: comma-first formatting A well-kn

                                                                    • python_modules.pdf

                                                                      Python3 OpenCV / Pillow / pygame / Eel / PyDub / NumPy / matplotlib / SciPy / SymPy / gmpy2 / hashlib, passlib / Cython / Numba / ctypes / PyInstaller / curses / tqdm / JupyterLab / json / psutil / urllib / zenhan / jaconv Copyright © 2017-2025, Katsunori Nakamura 2025 8 19 Python ‘ .py’ Python Python Windows PSF Python py .py Enter macOS Linux PSF Python python3 .py Enter Anaconda Prompt Python p

                                                                      • htmy

                                                                        Source code: https://github.com/volfpeter/htmy Documentation and examples: https://volfpeter.github.io/htmy htmy Async, pure-Python server-side rendering engine. Unleash your creativity with the full power and Python, without the hassle of learning a new templating language or dealing with its limitations! Key features Async-first, to let you make the best use of modern async tools. Powerful, Reac

                                                                        • はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場

                                                                          今回は Fusion-In-Decoder を使ってクイズに答えるモデルを作ります。以前から Wikipedia 等の外部情報を参照できるテキスト生成モデルを試してみたいと思っていました。Fusion-In-Decoder の発表は 2020 年なので少し前のモデルですが、T5 ベースで手軽に試せるサイズ感ですので、日本語で試してみましょう。 1. はじめに 今回紹介する Fusion-In-Decoder(以下、FiD )1 は Meta AI (当時は Facebook AI Research) が発表した Open Domain question Answering タスクを解くテキスト生成モデルです。 じつは、以前から外部情報を参照できるテキスト生成モデルを試してみたくて2、 Google の RETRO3 の論文を読んでたんです。 なのですが、外部情報のサイズ感が 1000 B

                                                                            はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場
                                                                          • OpenAI API の Structured Outputs の使い方|npaka

                                                                            以下の記事が面白かったので、簡単にまとめました。 ・Introducing Structured Outputs in the API 1. Structured Outputs昨年のDevDayで、「JSONモード」を導入しました。これは、OpenAIのモデルを使用して信頼性の高いアプリを構築しようとしている開発者にとって便利な構成要素です。「JSONモード」は、有効なJSON出力を生成するためのモデルの信頼性を向上させますが、モデルの応答が特定のスキーマに準拠することを保証するものではありません。本日、APIに「Structured Outputs」を導入します。これは、モデルによって生成された出力が、開発者が提供するJSONスキーマと完全に一致するように設計された新機能です。 複雑なJSONスキーマのフォローの評価では、「Structured Outputs」を備えた新しいモデル「g

                                                                              OpenAI API の Structured Outputs の使い方|npaka
                                                                            • 0.8.0 Release Notes ⚡ The Zig Programming Language

                                                                              Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                                                              • January 2025 (version 1.97)

                                                                                Update 1.97.1: The update addresses these security issues. Update 1.97.2: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the January 2025 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highlights include: Next Edit Suggestions (preview) - Co

                                                                                  January 2025 (version 1.97)
                                                                                • Amazon ConnectとKinesis Data Streamsを使用し、エージェントの介在がないIVRの場合でも電話中のユーザーの発話を録音する方法 | DevelopersIO

                                                                                  はじめに この記事では、Amazon ConnectとKinesis Data Streams(以下、KDS)を用いて、エージェントが介在しなくても、ユーザーの発話を録音する方法を紹介します。 Connectでは、下記のコンタクフローのブロックで録音できますが、録音条件は、顧客とエージェントが繋がってからのみ録音されます。 例えば「留守番電話」やAmazon Lexと組み合わせた「AIチャットボット」のように、エージェントが介在しない場合、通常の録音機能は利用できません。 解決策として、コンタクフロー内で「メディアストリーミングの開始」というブロックを利用し、Kinesis Video Streams(以降、KVS)にメディアデータを保存できます。ただし、注意点として、保存されたメディアデータはMatroska(MKV)形式となるため、一般的であるWAVなどの形式に変換する作業が必要となり

                                                                                    Amazon ConnectとKinesis Data Streamsを使用し、エージェントの介在がないIVRの場合でも電話中のユーザーの発話を録音する方法 | DevelopersIO