並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 62件

新着順 人気順

python check if in list of dictの検索結果1 - 40 件 / 62件

  • OpenAI API の ファインチューニングガイド|npaka

    1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

      OpenAI API の ファインチューニングガイド|npaka
    • Writing Python like it’s Rust

      You can check out a YouTube recording of a talk based on this blog post. I started programming in Rust several years ago, and it has gradually changed the way I design programs in other programming languages, most notably in Python. Before I started using Rust, I was usually writing Python code in a very dynamic and type-loose way, without type hints, passing and returning dictionaries everywhere,

      • MCP Python SDK のドキュメント|npaka

        以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

          MCP Python SDK のドキュメント|npaka
        • GPT in 60 Lines of NumPy | Jay Mody

          January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

          • Writing a C compiler in 500 lines of Python

            A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

            • 型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog

              はじめに こちらはABEJAアドベントカレンダー2024 12日目の記事です。 こんにちは、ABEJAでデータサイエンティストをしている坂元です。最近はLLMでアプローチしようとしていたことがよくよく検証してみるとLLMでは難しいことが分かり急遽CVのあらゆるモデルとレガシーな画像処理をこれでもかというくらい詰め込んだパイプラインを実装することになった案件を経験して、LLMでは難しそうなことをLLM以外のアプローチでこなせるだけの引き出しとスキルはDSとしてやはり身に付けておくべきだなと思うなどしています(LLMにやらせようとしていることは大抵難しいことなので切り替えはそこそこ大変)。 とはいうものの、Agentの普及によってより複雑かつ高度な推論も出来るようになってきています。弊社の社内外のプロジェクト状況を見ていても最近では単純なRAG案件は減りつつあり、計画からアクションの実行、結果

                型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog
              • Security best practices when using ALB authentication | Amazon Web Services

                Networking & Content Delivery Security best practices when using ALB authentication At AWS, security is the top priority, and we are committed to providing you with the necessary guidance to fortify the security posture of your environment. In 2018, we introduced built-in authentication support for Application Load Balancers (ALBs), enabling secure user authentication as they access applications.

                  Security best practices when using ALB authentication | Amazon Web Services
                • ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ

                  Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 エムスリーではChatGPTの可能性にいち早く注目して活用を検討している段階ですが、本格的なデータ投入にはまだ懸念もあり、セキュリティチームと検討を進めている段階です。 そんな中で個人または組織のドキュメントのセマンティック検索と取得を可能にするChatGPTプラグイン「ChatGPT Retrieval Plugin」が登場しました。 github.com 情報検索好きとしては黙っていられず、外部公開用のエムスリーAI・機械学習チームのメンバー紹介ドキュメントを使ってローカルで試してみました。 # 用意したドキュメント 中村弘武は東京都在住で、エムスリーという企業で働いでいます。 エムスリーの検索基盤を主に担当しています。また、書

                    ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ
                  • ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO

                    こんちには。 データアナリティクス事業本部 インテグレーション部 機械学習チームの中村です。 今回は話題のChatGPTにコンテキストを与える際に必要となるファイルパース処理について見ていきたいと思います。 本記事ではPDFに焦点を絞ってみていきます。既存のライブラリ内の実装も確認していきます。 先行事例の実装 先行事例の実装として、よく話題となる以下のライブラリを見ていきます。 (LlamaIndexとLlamaHubはほぼ同じですが、parserとしては片方にしかないものもあるため) LlamaIndex https://github.com/jerryjliu/llama_index https://gpt-index.readthedocs.io/en/latest/index.html LlamaHub https://github.com/emptycrown/llama-hu

                      ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO
                    • 第752回 RISC-VのシングルボードコンピューターであるVisionFive 2を使ってみる | gihyo.jp

                      今回はStarFive Technology製のRISC-Vシングルボードコンピューター(SBC)であるVisionFive 2にDebianをインストールして、その性能を計測してみましょう。 RISC-VとVisionFive 2 RISC-V(りすく・ふぁいぶ)は今もっとも熱い命令セットアーキテクチャーです。2010年頃に生まれたRISC-Vは、オープンな規格という強みを活かしてどんどんエコシステムを構築し、今では様々な企業がRISC-Vに本格的に手を出す状況になっています。AMD64/Intel 64やARMには性能も普及度合いもまだまだ及びませんが、今の勢いを維持できれば近い将来その状況は変わってくるでしょう。 本連載でも2018年ぐらいから、RISC-Vの記事を何度か取り上げていました。 第505回:「オープン規格の新しい命令セットアーキテクチャRISC-V入門 ツールチェインを

                        第752回 RISC-VのシングルボードコンピューターであるVisionFive 2を使ってみる | gihyo.jp
                      • 複数の AWS アカウントの AWS Security Hub 検出結果を Google BigQuery と Google DataPortal(DataStudio) により可視化した話 - Adwaysエンジニアブログ

                        こんにちは、インフラの天津です。今日は 複数アカウントの AWS Security Hub 検出結果の可視化についてお話したいと思います。 前提 モチベーション AWS Security Hub とは 構想 ツール・サービスの選定 検出結果データのエクスポートについて 可視化用データベース(またはクエリサービス)と可視化ツールについて 構築 全体像 検出結果データエクスポート 検出結果データの S3 -> GCS への転送と BigQuery へのインポート Security Hub からエクスポートしたデータには BigQuery のカラム名に使用できない文字(以下禁則文字)が使用されている件 自動判別で生成されたスキーマでインポートした際に INTEGER 型のカラムに STRING 型のデータが入ってくることがありインポートエラーが発生する件 AWS アカウントデータの S3 ->

                          複数の AWS アカウントの AWS Security Hub 検出結果を Google BigQuery と Google DataPortal(DataStudio) により可視化した話 - Adwaysエンジニアブログ
                        • SuperwhisperとVSCodeのCopilot Agentを使って、音声から素早くブログを書き上げる - yasuhisa's blog

                          3行まとめ アウトプットの速度を上げたいが、記事を書くのは時間がかかる SuperwhisperとVSCodeのCopilot Agentを組み合せて、音声からブログを書き上げるワークフローを組んだ 実際に使っているpromptを含め、真似しやすいように詳しく紹介 3行まとめ 背景: アウトプット速度を上げたい & LLMの急速な進化 利用している技術 Superwhisper: 技術用語も認識する書き起しアプリ VSCode Copilot Agent: 自然言語で校正のワークフローを組み込む 実用例: どれくらい早くアウトプットできるようになるか 実際のワークフロー 工夫した点 過去に自分が執筆したテキストの資産を活用する 依存関係の抽出を自動で行なう 複数のAgentにレビューをさせる タイトル案の自動生成 実装を通して得られた学び 自然言語でワークフローを組み立てることの難しさ エ

                            SuperwhisperとVSCodeのCopilot Agentを使って、音声から素早くブログを書き上げる - yasuhisa's blog
                          • openai/gpt-oss-120b · Hugging Face

                            ","eos_token":"<|return|>","pad_token":"<|endoftext|>"},"chat_template_jinja":"{#-\n In addition to the normal inputs of `messages` and `tools`, this template also accepts the\n following kwargs:\n - \"builtin_tools\": A list, can contain \"browser\" and/or \"python\".\n - \"model_identity\": A string that optionally describes the model identity.\n - \"reasoning_effort\": A string that describes t

                              openai/gpt-oss-120b · Hugging Face
                            • Azure OpenAI Service の Assistants API でデータ分析 - Taste of Tech Topics

                              こんにちは、igaです。 最近は気温の上下が大きいので、服装選びが大変ですね。 今回は、Azure OpenAI Servce Assistants APIを使ってみました。 Azure OpenAI Servce Assistants APIに横浜市の人口データを投入して、人口の増減がどう推移しているのか自動で分析させてみました。 Azure OpenAI Servce Assistants API Azure OpenAI Servce Assistants APIとは Azure OpenAI Servce Assistants APIは、2024年4月現在パブリックプレビューとして利用できる機能です。 learn.microsoft.com Azure OpenAI Servce Assistants API(以降、Assistantsと表記します)により、Azure OpenAI

                                Azure OpenAI Service の Assistants API でデータ分析 - Taste of Tech Topics
                              • Implementing Logic Programming

                                Most of my readers are probably familiar with procedural programming, object-oriented programming (OOP), and functional programming (FP). The majority of top programming languages on all of the language popularity charts (like TIOBE) support all three to some extent. Even if a programmer avoided one or more of those three paradigms like the plague, they’re likely at least aware of them and what th

                                  Implementing Logic Programming
                                • Python's "Type Hints" are a bit of a disappointment to me

                                  blog - git - desktop - images - contact Python's "Type Hints" are a bit of a disappointment to me 2022-04-21 Preface You are reading version 2.0 of this blog post. I've incorporated some feedback I got into this revised version. Introduction Over the course of several Python 3.x versions, "type hints" were introduced. You can now annotate functions: def greeting(name: str) -> str: return 'Hello '

                                  • 拡散モデルによるコード生成モデル「Dream-Coder 7B」をmacOSで動かして他モデルと比較してみた - Generative Agents Tech Blog

                                    ジェネラティブエージェンツの西見です。 Googleが発表した拡散モデルを利用した言語モデル「Gemini Diffusion」があまりにも爆速で動作していたのは記憶に新しいです。 deepmind.google そんな中、2025年7月15日に拡散モデルベースのオープンウェイトのLLMである「Dream-Coder」が公開されたのを見て、ローカルでどのぐらいの速度が出してくれるのかが気になり、検証してみました。 github.com Dream-Coderとは Dream-Coderは、香港大学NLPグループが開発した拡散モデルベースのコード生成LLMです。従来の自己回帰モデル(左から右への逐次生成)とは異なり、discrete diffusion modelingという手法を採用しています。 discrete diffusion modelingとは、画像生成で使われる拡散モデルをテキ

                                      拡散モデルによるコード生成モデル「Dream-Coder 7B」をmacOSで動かして他モデルと比較してみた - Generative Agents Tech Blog
                                    • Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務を効率化〜

                                      Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務を効率化〜 こんにちは、Ubieでアナリティクスエンジニア/データアナリストをしているmatsu-ryuです。 普段は、Ubieが提供するサービスから得られる様々なデータを活用し、「テクノロジーで人々を適切な医療に案内する」というミッションの実現に向けて取り組んでいます。 皆さんの職場では、こんなやり取りはありませんか? 「先月のカテゴリ別売上トップ3、都道府県別で出せますか?」 「レビュー評価が星1つの商品のリストと、その商品を買ったユーザーのリストをお願いします。」 データドリブンな意思決定が重視される昨今、こうしたデータ抽出・分析の依頼は日常的に発生します。しかし、その裏側では多くの組織が共通の課題を抱えています。 SQLの壁: 分析したい人が必ずしもSQLを書ける

                                        Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務を効率化〜
                                      • Why I use attrs instead of pydantic

                                        This post is an account of why I prefer using the attrs library over Pydantic. I'm writing it since I am often asked this question and I want to have something concrete to link to. This is not meant to be an objective comparison of attrs and Pydantic; I'm not interested in comparing bullet points of features, nor can I be unbiased since I'm a major contributor to attrs (at time of writing, second

                                        • はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場

                                          今回は Fusion-In-Decoder を使ってクイズに答えるモデルを作ります。以前から Wikipedia 等の外部情報を参照できるテキスト生成モデルを試してみたいと思っていました。Fusion-In-Decoder の発表は 2020 年なので少し前のモデルですが、T5 ベースで手軽に試せるサイズ感ですので、日本語で試してみましょう。 1. はじめに 今回紹介する Fusion-In-Decoder(以下、FiD )1 は Meta AI (当時は Facebook AI Research) が発表した Open Domain question Answering タスクを解くテキスト生成モデルです。 じつは、以前から外部情報を参照できるテキスト生成モデルを試してみたくて2、 Google の RETRO3 の論文を読んでたんです。 なのですが、外部情報のサイズ感が 1000 B

                                            はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場
                                          • SRE2.0: LLMサービスの信頼性を測る新しい評価指標の紹介 | メルカリエンジニアリング

                                            こんにちは。Fintech SREの佐藤隆広(@T)です。 この記事は、Merpay & Mercoin Tech Openness Month 2025 の11日目の記事です。 Google社が提唱し、Site Reliability Engineering Bookによって広く知られるようになったSREの信頼性マネジメントは、開発と運用の関係性を再定義し、SLI/SLOとエラーバジェットに始まり、Availability・Latency・エラーレート・トラフィック・リソース飽和度・耐久性といったような指標で補強されてきました。 ところが近年、大規模言語モデル(LLM)の進歩が著しく、サービスにLLMを利用する機会が増えることによって、 プロンプトを数行変えただけで回答品質が変動する Latencyやエラーレートが良好でも幻覚(ハルシネーション)が急増する モデルの軽微なアップデートで回

                                              SRE2.0: LLMサービスの信頼性を測る新しい評価指標の紹介 | メルカリエンジニアリング
                                            • はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場

                                              今更ですが今年の2月に spaCy 3.0 が公開されました。 3.0 で導入された新機能の中で目玉と言えるのは、やはり Hugging Face Transformers (以下、単にTransformers) のサポートや PyTorch, Tensorflow との連携になるでしょう。今回はその辺りを実際に学習を動かしながら紹介したいと思います。 1. はじめに 今回は今年の2月に公開された spaCy 3.0 の話です。 spaCy は第4回でも紹介しましたが、研究者向けというよりは自然言語処理アプリ開発者向けのオープンソース自然言語処理ライブラリになります。日本語を含めた様々な言語の学習済みモデルが存在しており、 spaCy をインストールして、学習済みモデルをダウンロードするだけで、分かち書き、品詞や依存関係の推定、単語や文の類似度の判定など様々な機能を使用することができます。

                                                はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場
                                              • Solving Quantitative Reasoning Problems With Language Models

                                                Solving Quantitative Reasoning Problems with Language Models Aitor Lewkowycz∗, Anders Andreassen†, David Dohan†, Ethan Dyer†, Henryk Michalewski†, Vinay Ramasesh†, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur∗, Guy Gur-Ari∗, and Vedant Misra∗ Google Research Abstract Language models have achieved remarkable performance on a wide range of tasks that require

                                                • Velja

                                                  Open links in a specific browser or a matching native app. Easily switch between browsers. In-depth review of Velja. Trusted by almost 130K users. You may also like my Default Browser app. Example use-cases Use Safari as your primary browser but open Google Meet links in Chrome Open links to figma.com directly in the Figma desktop app Open links to the internal company website in Firefox Open Zoom

                                                    Velja
                                                  • openai/gpt-oss-20b · Hugging Face

                                                    ","eos_token":"<|return|>","pad_token":"<|endoftext|>"},"chat_template_jinja":"{#-\n In addition to the normal inputs of `messages` and `tools`, this template also accepts the\n following kwargs:\n - \"builtin_tools\": A list, can contain \"browser\" and/or \"python\".\n - \"model_identity\": A string that optionally describes the model identity.\n - \"reasoning_effort\": A string that describes t

                                                      openai/gpt-oss-20b · Hugging Face
                                                    • Ordering Movie Credits With Graph Theory

                                                      At Endcrawl we're always thinking about the hard work that goes into making film and TV, and how that work translates to on-screen credits. A feature film may involve thousands of people, hundreds of distinct job titles or "roles," and dozens of departments. So there's plenty for a producer to worry about, like: Did we forget or misspell a name? Is this the correct way to credit that role? Do all

                                                        Ordering Movie Credits With Graph Theory
                                                      • はじめての自然言語処理 DeepSpeed-Chat による RLHF の紹介 | オブジェクトの広場

                                                        今回は DeepSpeed-Chat による RLHF のご紹介です。正直、データセットや計算資源の都合もあり、とりあえず動かしてみました!的な話にはなりますが、RLHF の効果が実際に確認できるか見てみたいと思います。 1. はじめに 今回は DeepSpeed-Chat1 を使って RLHF を試してみたいと思います。RLHF は Reinforcement Learning from Human Feedback の略で文字通り「人からのフィードバックを用いた強化学習」ということですね。OpenAI が InstructGPT(ChatGPT の元になったモデル)2 で使ったことで注目された手法になります。 LLM がらみで何か記事にしたいと思いつつ、日々新たな LLM が発表されている昨今に、隔月&内容が実時間から月単位で遅れ気味wの本連載です。 「どうしたもんかな。。。」と悩みに

                                                          はじめての自然言語処理 DeepSpeed-Chat による RLHF の紹介 | オブジェクトの広場
                                                        • 【GROMACS】Umbrella samplingによるMD simulation 【In silico創薬】【SMD】 - LabCode

                                                          Windows 11 Home, 13th Gen Intel(R) Core(TM) i7-13700, 64 ビット オペレーティング システム、x64 ベース プロセッサ, メモリ:32GB Umbrella Samplingの概要と目的Umbrella Samplingは、分子がめったに起こさないような状態変化(たとえば、タンパク質同士が離れるなど)を詳しく調べるための計算手法です。通常の分子動力学(MD)では、エネルギー的に安定な状態にとどまりやすく、重要な変化が起こる確率が低いため、十分な情報が得られません。 たとえば、タンパク質AとBがくっついている状態から、少しずつ離れていく様子を観察したいとき、まずAとBを少しずつ引き離すSteered Molecular Dynamics(SMD)などのシミュレーションで、さまざまな距離の構造を取得します。その中から、0.5nm、0.7

                                                          • Tool Calling with LangChain

                                                            TLDR: We are introducing a new tool_calls attribute on AIMessage. More and more LLM providers are exposing API’s for reliable tool calling. The goal with the new attribute is to provide a standard interface for interacting with tool invocations. This is fully backwards compatible and is supported on all models that have native tool-calling support. In order to access these latest features you will

                                                              Tool Calling with LangChain
                                                            • AWS公式のECSハンズオンがとても良かった!! - Qiita

                                                              はじめに お疲れ様です。矢儀 @yuki_ink です。 こちらのAWS公式ハンズオンをやってみました。 ECSとFargate/EC2を利用した環境構築から、CI/CDパイプラインを利用したデプロイまで、一通り体験できる素晴らしいハンズオンでした。 次のようなみなさんにおすすめです。 ECSを知識として知ってはいるが、実際に触ったことがない コンテナの何が優れているのか、実感を持っては理解できない CI/CDパイプラインでコンテナをデプロイしてみたい ハンズオンで構築する環境の構成イメージはこちら。 1. VS Code Serverの構築 このハンズオンでは、開発環境として Visual Studio Code Server (VS Code Server) を利用するとのことで、まず、CloudFormationでVS Code Serverを構築していきます。 ハンズオンページの

                                                                AWS公式のECSハンズオンがとても良かった!! - Qiita
                                                              • EC2インスタンスのユーザーデータ内のdnfコマンドやyumコマンドが失敗する場合の緩和策を考えてみた | DevelopersIO

                                                                ユーザーデータでパッケージのインストールをしようとすると失敗するんだが こんにちは、のんピ(@non____97)です。 皆さんはEC2インスタンスのユーザーデータでdnfコマンドやyumコマンドが失敗したことはありますか? 私はあります。 具体的にはユーザーデータでdnf upgradeやdnf install パッケージ名を実行すると、以下のようにRPM: error: can't create transaction lock on /var/lib/rpm/.rpm.lock (Resource temporarily unavailable)とログが出力されます。 $ dnf upgrade -y --releasever=latest Amazon Linux 2023 repository 30 MB/s | 23 MB 00:00 Amazon Linux 2023 Ker

                                                                  EC2インスタンスのユーザーデータ内のdnfコマンドやyumコマンドが失敗する場合の緩和策を考えてみた | DevelopersIO
                                                                • Mastering Customer Segmentation with LLM | Towards Data Science

                                                                  Unlock advanced customer segmentation techniques using LLMs, and improve your clustering models with advanced techniques Content Table · Intro · Data · Method 1: Kmeans · Method 2: K-Prototype · Method 3: LLM + Kmeans · Conclusion Intro A customer segmentation project can be approached in multiple ways. In this article I will teach you advanced techniques, not only to define the clusters, but to a

                                                                    Mastering Customer Segmentation with LLM | Towards Data Science
                                                                  • What's New in Emacs 28.1?

                                                                    Try Mastering Emacs for free! Are you struggling with the basics? Have you mastered movement and editing yet? When you have read Mastering Emacs you will understand Emacs. It’s that time again: there’s a new major version of Emacs and, with it, a treasure trove of new features and changes. Notable features include the formal inclusion of native compilation, a technique that will greatly speed up y

                                                                    • Vim9 script for Python Developers · GitHub

                                                                      vim9script4pythondevelopers.md Vim9 script for Python Developers Vim9 script�Vim script��������������������������������������������������系��� def������義����������Vim script��vim9script�����使����������(vim9script���

                                                                        Vim9 script for Python Developers · GitHub
                                                                      • ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PowerPoint編) | DevelopersIO

                                                                        こんちには。 データアナリティクス事業本部 インテグレーション部 機械学習チームの中村です。 今回は話題のChatGPTにコンテキストを与える際に必要となるファイルパース処理について見ていきたいと思います。 PowerPointに焦点を絞ってみていきます。既存のライブラリ内の実装も確認していきます。 先行事例の実装 先行事例の実装として、よく話題となる以下のライブラリを見ていきます。 (LlamaIndexとLlamaHubはほぼ同じですが、parserとしては片方にしかないものもあるため) LlamaIndex https://github.com/jerryjliu/llama_index https://gpt-index.readthedocs.io/en/latest/index.html LlamaHub https://github.com/emptycrown/llama-

                                                                          ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PowerPoint編) | DevelopersIO
                                                                        • Renato Athaydes

                                                                          Revenge of Lisp (Part 1⁄2) Background vector created by upklyak - www.freepik.com This may surprise you if you know me, but I’ve been learning Common Lisp for a few weeks now. It all started when I was reading, funnily enough, a blog post about another, much more hyped, language called Julia. The post was titled Julia and the reincarnation of Lisp, and in it the author lamented that despite his lo

                                                                          • Foldable Words | bit-player

                                                                            Packing up the household for a recent move, I was delving into shoeboxes, photo albums, and file folders that had not been opened in decades. One of my discoveries, found in an envelope at the back of a file drawer, was the paper sleeve from a drinking straw, imprinted with a saccharine message: This flimsy slip of paper seems like an odd scrap to preserve for the ages, but when I pulled it out of

                                                                            • Titanicで学ぶ、実務で使えるgokartの書き方 - エムスリーテックブログ

                                                                              こんにちは。エムスリーエンジニアリンググループ AI・機械学習チームで機械学習エンジニアをしている農見(@rookzeno) です。最近はgokartを使ったパイプライン開発に勤しんでます。 皆さんはgokartというものをご存知でしょうか。この記事を開く人は知ってそうですが、gokartとはエムスリーがメンテナンスしている機械学習パイプラインOSSです。もしgokartのことを知らなかった人が居たらこのgokartの記事を読んでください。 エムスリー内ではこれを全面的に利用して開発を行なっていますが、その知見は社内に閉じてるものも多いです。そこでエムスリー内でどんな感じでgokartを使ってるかというのをTitanicデータセットを利用して説明していこうと思います。 今回使用したコードはこちら github.com はじめに 全体pipelineの作成 1. データのダウンロード 2.

                                                                                Titanicで学ぶ、実務で使えるgokartの書き方 - エムスリーテックブログ
                                                                              • Python behind the scenes #11: how the Python import system works

                                                                                If you ask me to name the most misunderstood aspect of Python, I will answer without a second thought: the Python import system. Just remember how many times you used relative imports and got something like ImportError: attempted relative import with no known parent package; or tried to figure out how to structure a project so that all the imports work correctly; or hacked sys.path when you couldn

                                                                                • Plan 9 Desktop Guide

                                                                                  PLAN 9 DESKTOP GUIDE INDEX What is Plan 9? Limitations and Workarounds Connecting to Other Systems VNC RDP SSH 9P Other methods Porting Applications Emulating other Operating Systems Virtualizing other Operating Systems Basics Window Management Copy Pasting Essential Programs Manipulating Text in the Terminal Acme - The Do It All Application Multiple Workspaces Tiling Windows Plumbing System Admin