
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務を効率化〜
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務を効率化〜
Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務... Pydantic AIで作る!実践Text-to-SQLシステム構築ガイド 〜自然言語によるデータ抽出の自動化で分析業務を効率化〜 こんにちは、Ubieでアナリティクスエンジニア/データアナリストをしているmatsu-ryuです。 普段は、Ubieが提供するサービスから得られる様々なデータを活用し、「テクノロジーで人々を適切な医療に案内する」というミッションの実現に向けて取り組んでいます。 皆さんの職場では、こんなやり取りはありませんか? 「先月のカテゴリ別売上トップ3、都道府県別で出せますか?」 「レビュー評価が星1つの商品のリストと、その商品を買ったユーザーのリストをお願いします。」 データドリブンな意思決定が重視される昨今、こうしたデータ抽出・分析の依頼は日常的に発生します。しかし、その裏側では多くの組織が共通の課題を抱えています。 SQLの壁: 分析したい人が必ずしもSQLを書ける