タグ

2017年1月18日のブックマーク (2件)

  • 【統計学】尤度って何?をグラフィカルに説明してみる。 - Qiita

    統計学や機械学習をを勉強していると「尤度」という概念に出会います。まず読めないというコメントをいくつかいただきましたが、「尤度(ゆうど)」です。「尤もらしい(もっともらしい)」の「尤」ですね。犬 じゃありませんw 確率関数や確率密度関数を理解していれば数式的にはこの尤度を処理できると思うのですが、少し直感的な理解のためにグラフィカルに解説を試みたいと思います。 コードの全文はGithub( https://github.com/matsuken92/Qiita_Contents/blob/master/General/Likelihood.ipynb )にも置いてあります。 正規分布を例にとって 正規分布の確率密度関数は f(x)={1 \over \sqrt{2\pi\sigma^{2}}} \exp \left(-{1 \over 2}{(x-\mu)^2 \over \sigma^2

    【統計学】尤度って何?をグラフィカルに説明してみる。 - Qiita
    seneca
    seneca 2017/01/18
  • ライブラリーを使わずにPythonでニューラルネットワークを構築してみる - Qiita

    コードはこちら: 全てのコードはGithub上のIpython Notebookでも公開しています。 この投稿では、1から3階層のシンプルなニューラルネットワークを構築します。出てくる全ての数学の解説はしませんが、可能な限り必要な部分は、わかりやすく説明したいと思います。数学の詳細が気になる方は、英語が多いですが参考になるリンクを下記で記載します。 ※この投稿の読者は最低限、微分と機械学習の基礎(クラシフィケーションや正則化など)を知っていると仮定します。更にGradient Descent(勾配降下法)のような最適化技術を知っていれば、なお良しです。ただ上記を知らなくても、ニューラルネットワークに興味のある方なら楽しめる内容だと思います。 それではまず、なぜライブラリーを使わずに一からニューラルネットワークを構築する必要があるのでしょうか?後の投稿でPyBrainやTensorflowの

    ライブラリーを使わずにPythonでニューラルネットワークを構築してみる - Qiita
    seneca
    seneca 2017/01/18