Raggleの第2回コンペでアイデア賞をいただいたのでメモ。ありがとうございます〜 ソースコード 下記を参考に、Transformerモデル組み込みたいんやけど...と生成AIに相談してコード作りました。要件定義と手元デバッグ野郎でした。 解法のコア このツイートにほぼすべてが詰まっています。Twitter最高! TransformerではないEmbeddingモデルである、static-embedding-japaneseをベクトル検索に用いました。 著者のセコンさんもTwitterに書いてくださっていますが、CPUでも爆速でEmbeddingできます。 今回のコンペで使った文書のEmbeddingに使う時間を比較してみたところ、以下の通りでした。 モデル 時間 上記は 396chunks(1chunk, 1000文字ごとチャンク) での計測時間です。 ※ 各々のCPUのスペックやOpe
