タグ

ブックマーク / hoxo-m.hatenablog.com (3)

  • 可視化で理解するマルコフ連鎖モンテカルロ法(MCMC) - ほくそ笑む

    先日行われた第9回「データ解析のための統計モデリング入門」読書会にて、 「可視化で理解するマルコフ連鎖モンテカルロ法」というタイトルで発表させて頂きました。 発表スライドは以下です。 可視化で理解するマルコフ連鎖モンテカルロ法 from hoxo_m この発表は、みどりぼんに登場する、マルコフ連鎖モンテカルロ法(MCMC)のアルゴリズムである「メトロポリス法」と「ギブス・サンプラー」について、可視化して理解しようというお話です。 「マルコフ連鎖モンテカルロ法」というのは、字面だけ見ると難しそうですが、この発表で理解すべきポイントは、次のスライド 1枚に凝縮されています。 このことを念頭に置いて、それぞれの手法を見ていきましょう。 まず、メトロポリス法ですが、これは、 前の状態の近くの点を次の遷移先候補として選ぶ(マルコフ連鎖) そのときの確率比 r < 1 ならば確率 r で棄却する。それ

    可視化で理解するマルコフ連鎖モンテカルロ法(MCMC) - ほくそ笑む
  • 主座標分析について簡単に紹介するよ! - ほくそ笑む

    今日は主座標分析(Principal Coordinate Analysis; PCoA)の紹介を簡単にしたいと思います。 主座標分析は古典的多次元尺度構成法(Classical Multidimensional Scaling; CMDS)とも呼ばれる統計解析手法です。 この解析手法を使用する主な目的は、高次元のデータを2次元や3次元に落として視覚化したいという時に使います。 以前紹介した主成分分析と同じような感じですね。*1 主成分分析との違いを簡単に言うと、主成分分析はユークリッド距離をなるべく保ちながら低次元に落とす方法ですが、主座標分析はユークリッド距離だけでなく、他の距離や類似度*2が使えるという点にあります。 例えば、ユークリッド距離の代わりに相関係数を使えば、相関の高いもの同士が近い配置になるようなプロットを作ることが可能です。 データを用意する さっそくやってみたいのです

    主座標分析について簡単に紹介するよ! - ほくそ笑む
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • 1