機械学習を勉強する前に学んでおくべき最低の数学の範囲について、あれこれ議論されている*1。この手の議論、なかなか不毛である。ライブラリをブラックボックスとして使う分には、数学の知識はほぼ不要。中身を考えながら使うには、大学の学部の微分積分と線形代数と確率・統計の教科書をまずは頑張れと言う自明な話になるからだ。 1. ライブラリの利用に数学はほぼ要らない 本当にライブラリ利用者としては、数学の知識をほとんど要求されない。例えばSVMの分類器を構築するのに、プログラマが指定する必要があるのは、分類先と識別のための特徴量が入った学習データと、データの項目間の関係を説明する文、チューニングするのに使えるオプションが幾つかあるぐらいだ。オプションは経験的に精度が良くなるように選ぶ。これはランダムフォレストなどでも同じになる。 ディープラーニングのライブラリ、TensorFlowだと行列形式の乗算と加