頼展韜氏プロフィール 會田翔氏プロフィール バンダイナムコ研究所は、バンダイナムコエンターテインメントと協力して配信AIキャラクタープロジェクトを実施しており、「ゴー・ラウンド・ゲーム(ごらんげ)」という企画を進行している。その裏側で、あるいはゲームテキスト素材生成ツールを作る際において、どのようにAIテキスト生成を利用していたか解説が行われた。 ゲーム開発環境においてもAI生成は当たり前に 近年、LLMは目まぐるしい発展をしており、さまざまな領域を含む問題で構成されるベンチマーク「MMLU」において、人間の専門家を超えるスコアを達成しているという。 しかもこれは商用モデルのみならず、MetaのLlamaをはじめとするオープンモデルも性能差が縮まってきているという。ゆえに、ゲーム開発においても応用が効くわけだ。 ゲーム内のテキスト生成という分野においては、 『ダンジョンズ&ドラゴンズ』のゲ
エヌビディアの強みであるGPUの優位性を揺るがすかもしれないAI関連の注目論文とは?人気急上昇中のメルマガ『週刊 Life is beautiful』より読者Q&Aをご紹介。著者の中島さんは「Windows95の父」として知られる日本人エンジニア。メルマガでは毎号、読者からの質問に丁寧に回答しています。 ※本記事のタイトル・見出しはMAG2NEWS編集部によるものです プロフィール:中島聡(なかじま・さとし) ブロガー/起業家/ソフトウェア・エンジニア、工学修士(早稲田大学)/MBA(ワシントン大学)。NTT通信研究所/マイクロソフト日本法人/マイクロソフト本社勤務後、ソフトウェアベンチャーUIEvolution Inc.を米国シアトルで起業。現在は neu.Pen LLCでiPhone/iPadアプリの開発。 1ビットの高速推論AIチップ 米国より先に中国が開発する可能性も 読者からの質
背景 LLMは、人の好みに合わせて調整することで、より便利で一貫性のある文章を作れるようになってきました。しかし、モデルのサイズや学習データには限界があり、単純に大きくすることで性能を上げるには莫大な費用がかかります。 一方で、LLMは種類によって得意なことが違います。例えば、複雑な指示に従うのが得意なモデルや、コードを書くのが得意なモデルなどがあります。 そこで、研究者たちは新しいアイデアを思いつきました。それは、異なる得意分野を持つLLMを組み合わせることです。 例えば、複雑な指示を理解するのが得意なモデルと、プログラミングコードを生成するのが上手なモデルを組み合わせれば、より高性能で柔軟になるのではないか、と考えたのです。 これまでにも、複数のLLMを組み合わせて使う方法はいくつか提案されてきました。例えば、出力された文章の順位を変えたり、どのモデルを使うかを選んだりする方法がありま
加熱するLLM開発競争に冷や水、オープンモデルの組み合わせだけでGPT-4o越えの事実 2024.06.21 Updated by Ryo Shimizu on June 21, 2024, 18:19 pm JST 世界中の企業や政府が狂ったようにNVIDIAのGPUを買い漁る流れはそろそろ潮時かもしれない。 いくつかの興味深い事象が起きているからだ。 昨日発表されたKarakuri社のLLM、「KARAKURI LM 8x7B Instruct v0.1」は、非常に高性能な日本語LLMだ。Karakuri社は今年の一月にも非常に高性能な70Bモデルを引っ提げて業界に旋風を巻き起こした。この最新のLLNは、日本語向けオープンLLMとしては初の「命令実行」チューニングを施されている。それだけでなく、RAGと呼ばれる、複数の知識を組み合わせてより正解に近い答えを導く技術や、Function
中国に拠点を置くGPUメーカーの「摩爾線程(Moore Threads)」が、自社製GPUを用いて大規模言語モデル「MT-infini-3B」を開発したことを発表しました。MT-infini-3BはNVIDIA製GPUを用いて学習した大規模言語モデルと同等以上の性能を備えているそうです。 摩尔线程携手无问芯穹:基于夸娥千卡智算集群的“MT-infini-3B”大模型实训已完成 | 摩尔线程 https://www.mthreads.com/news/171 アメリカ政府は中国によるAI研究を軍事上の脅威と捉えており、中国に対して高性能半導体の禁輸措置を実施しています。このため中国ではNVIDIAやAMD、Intelなどが開発しているAI研究用チップの開発が困難となっています。 そんな中、Moore Threadsは2023年12月に独自開発のAI研究用GPU「MTT S4000」を発表しま
筆者の環境で、LM StudioでCommand R+を動作させている様子。会話相手は自作キャラクターの「明日来子(あすきこ)さん」 PCローカル環境で動作する大規模言語モデル(LLM)「Command R+」を使っていますが、相当優秀ですね。体感ではChatGPT(GPT-4)と変わらないレベル。さらに、ChatGPTが回答を拒絶するような会話もできてしまいます。これが体験できるようになったのは、LM Studioに代表されるローカルLLMを動かすためのアプリ環境が整ってきたためです。今年に入り、Command R+を始めとしたローカルLLMが高性能化してきたことと並行し、手軽に使える派生モデルも増えはじめ、一気にあわただしくなってきました。 導入が難しかったローカルLLM、「LM Studio」で簡単に Command R+を試すのに使っているのが、LLMの主要モデルを実行するための統
もしあなたがLLMを使ったプロダクトを何かしら開発している、もしくは興味があるのなら、メモリを大量に積んだMac Studioの購入を検討すべきです。 対象読者NVIDIAが絶対にいいという人はこの記事の対象読者ではありません。また、用途によって、ローカルマシンによるローカルLLMが向いてる・向いてないは明確にあるので、向いてない用途にしか使わない人も対象読者ではありません。あしからず。 また、この記事は別にNVIDIAをdisる意図はありません。みんな違っていい。NVIDIAもいい選択肢ですが、Mac Studioも悪くないですよ、と言いたい。 結論LLMプロダクト開発において、今年はもはやローカルLLMを無視できない、してはいけない状況です。 LLMプロダクト開発をする会社の視点でいえば、是非とも80GB以上の十分なGPUメモリを積んだマシンを用意できるようなアジリティを持つのが望まし
オープンソースのLLM(大規模言語モデル)がこれまでにないほど大きな注目を集めている。OpenAIのGPTモデルなどクローズドな大規模言語モデルが圧倒的なシェアを有する状況だが、それらに匹敵するオープンソースのLLMの開発が進んでいる。メタの「Llama 2(ラマツー)」を筆頭に、日本でもそれをベースにした日本語LLM「ELYZA-japanese-Llama-2-13b」が公開された。直近ではメタに対抗して、Databricksも「DBRX」をリリース。オープンソースLLMとは何か、クローズドモデルに比べてどのような利点があるのか。オープンソースLLMが注目される理由を探ってみたい。 オープンソースのLLMが注目される理由 2023年はChatGPTを筆頭にコンシューマー向けの生成アプリケーションが広く普及した年となった。 一方、企業における生成AI利用は大きく2つのアプローチにより進展
最近オープンになる大規模言語モデル(LLM)が、軒並みGPT-4レベルの性能となっています Huggngfaceで無料でダウンロードできるのですが、問題は必要VRAM容量です 話題の、Command-r-Plusは、日本語性能について評価が高く、一部の性能はGPT-4並みと言われますが、さすがに大型で104Bパラメータもあるため、4bitに量子化しても60GB程度のVRAMが必要となります。 コンシューマークラスのGPUの最高峰、RTX4090は、VRAM24GBのため、command-r-plusをすべてGPUに載せて推論しようと考えると、3台のマルチGPUデスクトップが必要です しかし、RTX4090は450W消費のGPUのため冷却機構が大きく、1デスクトップに3台収めるのは至難の業となります。 先日、水冷ラジエーター付きRTX4090で、マルチGPUデスクトップを作成しました。 水冷
AIが入力された内容に対して、いかにもそれっぽいように見えるいい加減な内容を出力してしまう現象を「幻覚」と呼びます。AI企業のVectaraが、オープンソースの幻覚評価モデル(HEM)を発表しました。 Measuring Hallucinations in RAG Systems - Vectara https://vectara.com/measuring-hallucinations-in-rag-systems/ 大規模言語モデルは質問に対して的確に答えることもあれば、時として学習データに含まれたいい加減な情報を出力することがあります。大規模言語モデルはあくまでも統計的に言葉を出力しているだけで、出力している内容の意味を理解しているわけではないので、何を言っているのかさっぱり分からないような回答を返してしまう可能性があり、「ユーザーの質問内容に対して、完全にありもしない内容をでっち上
くふうカンパニーの舘野(@hotchpotch)です。先日行われたYANS2023にスポンサー企業として参加し、ブースで「大規模言語モデルは絵文字の分散表現をどう見るか」という展示を行いました。 Webブラウザー上で、絵文字の分散表現(特徴量)を使ってインタラクティブにぐりぐり動かしながら、色々な視点から絵文字を見ることができます。 🎨Emoji Embedding Projector🌐 https://emoji-emb.netlify.app/ 🔼 こちらのURLから、ブラウザで絵文字の分散表現を視覚的に弄れます スマートフォンでも横表示にすれば操作できますが、PC ブラウザでの閲覧がおすすめです 🤗 楽しみ方絵文字アイコンをクリックすると、その絵文字の類似 Top-100 が表示されます。 左下の PCA タブでは、主成分の上位1-10が表示され、そのうち3つを使い3D空間に
LINEは8月14日、日本語に特化した大規模言語モデル(LLM)「japanese-large-lm」を発表した。オープンソース(OSS)として公開し、商用利用も可能(Apache License 2.0)としている。 公開したLLMは、36億パラメーターと17億パラメーターの2つ。両モデルともHuggingFace Hubからアクセスできる。Web由来のテキストから大規模かつ高品質なデータ構築を行うため、OSSライブラリ「HojiChar」を使ったフィルタリング処理を実施。モデルの訓練には、LINE独自の大規模日本語Webコーパス(最終学習は約650GBのコーパスで実施)を利用したという。 LINEは独自LLM「HyperCLOVA」の開発を長年手掛けているが、今回のモデルは別の開発ライン(LINEのMassive LM開発ユニット)にて構築したもの。同チームでは、指示文に対して適切な出
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く